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Abstract—As Android apps become increasingly prevalent in
daily life, a common issue in the development process is the
configuration of UI colors, leading to color-related accessibility
issues that make the text or non-text on the app’s Ul difficult to
see due to low color contrast. Such color-related accessibility
issues are among the top issues in apps, having a negative
impact on vision and user experience. However, state-of-the-
art approaches are based on predefined rules and lack an
understanding of strategies for alternative colors, therefore failing
to generate patches acceptable to both app users and developers.
To address this research gap, we first conducted an empirical
study to explore common strategies used by app developers
when fixing real-world color-related accessibility issues. Based
on these findings, we proposed DroidPalette, an automated ap-
proach for repairing color-related accessibility issues in Android
apps. DroidPalette encodes the common strategies used by app
developers for selecting issue-fixing colors, as identified in our
empirical study, and combines this with the candidate issue-fixing
attributes identified from the Android framework and third-party
libraries to generate patches. We evaluated DroidPalette on 497
color-related accessibility issues across 105 real-world Android
apps, achieving a success rate of 66.60%. Encouragingly, out of
13 patches submitted to GitHub repositories, 8 have received
positive feedback from app developers.

Index Terms—Android, Automated Repair, Color-Related Ac-
cessibility Issues

I. INTRODUCTION

Android apps typically contain a diverse range of user
interfaces (UI) to deliver the functionalities designed by app
developers [1], [2]. However, despite their widespread adop-
tion, accessibility issues [3]-[7] remain a significant concern in
app design and development. Such issues often hinder usability
of app users, especially for individuals with disabilities. One of
the common issues among them is color-related accessibility
issues, which occur when the contrast between text or non-text
and their background is insufficient for app users to understand
the content clearly. The above color-related accessibility issues
have been considered by app developers as a challenge because
they negatively impact the user experience [8]-[10]. Therefore,
app developers should accurately identify and address these
issues to enhance usability and accessibility.

Figure 1 shows a UI page from onebusaway-android [11]
that suffers from color-related accessibility issues, where the
round progress bar has a color-related accessibility issue due
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to insufficient contrast between the foreground and back-
ground colors. This occurs because the app developers did
not specify android:indeterminateTint, which is a
critical attribute for configuring the foreground color of the
progress bar. To repair this issue, the app developer explicitly
specified the android:indeterminateTint attribute in
XML configuration files and chose an appropriate value, as
shown in Figure 1.

From the perspective of app developers, the manual process
of detecting and fixing color-related accessibility issues poses
a significant challenge. Android apps typically contain thou-
sands of XML configuration files used to build the app’s Ul
pages, with each XML file containing multiple UI components
[12]. Manually inspecting each UI component to identify
potential color-related accessibility issues is a time-consuming
task. For detecting these issues, there are existing research
efforts to assist [4], [13]. Among them, Xbot is the state-of-
the-art approach that relies on Google Accessibility Scanner
[13] to detect color-related accessibility issues. Specifically,
Xbot performs a static analysis on all XML configurations in
the app and calculates the contrast ratio between foreground
and background colors to identify color-related accessibility
issues (Output example is shown in Figure 2). However,
these approaches cannot provide developers with patches for
these color-related accessibility issues. Given the prevalence
of such issues, repairing these identified issues still requires a
significant manual effort, especially when there are potentially
numerous color-related accessibility issues in an Android app.
Therefore, an automated approach is needed to help developers
automatically repair these color-related accessibility issues.

However, to automate the repair of color-related acces-
sibility issues, one should address the following research
challenges. First, how to choose colors that eliminate low
color contrast and align with the styles of other Ul com-
ponents. Second, there are multiple ways to fix color-
related accessibility issues. Given the large codebase of
Android apps, finding the right place to implement the fix
in the app code can be difficult. Additionally, ensuring that
the patch does not cause any side effects is also a crucial
point. To further repair the color-related accessibility issue
shown in Figure 1, one first needs to comprehensively con-
sider and select @Rcolor/header_text_faded_color
as the issue-fixing color. Then, we need to analyze the



route_info_head.xml

01 <ProgressBar

02 android:id="@+id/route_info_loading_spinner"
03 style="?android:progressBarStyleLarge"
04 android:visibility="visible"
05 + android:indeterminateTint="@color/header_text_faded_color"
06 android:Iayout_alignParentleft="true
o7 android:layout_centerVertical="true"/>
(c)

Fig. 1: This issue originates from the onebusaway-android
[11]. Specifically: (a) A UI component with color-related
accessibility issue, (b) The developer’s fix, (c) Edit
route_info_head.xml to repair the color-related acces-
sibility issue in (a).

Android project’s codebase to locate the effective attribute
android:indeterminateTint in order to determine
where our patch should be applied.

Existing studies [14]-[16] have extensively explored color-
related accessibility issues from multiple perspectives. For
example, Linares-Vasquez et al. [14] developed a method for
generating a color scheme aiming to reduce energy consump-
tion in app Uls rather than address color-related accessibility
issues. Recently, Zhang et al. [15] proposed Iris, an automated
approach to repair color-related accessibility issues. However,
Iris generates repair patches for these issues using hard-coded
rules, which limits its ability to comprehensively cover all
possible scenarios. Additionally, Iris’s repair process relies
on a corpus of UI colors built from other Android apps.
Directly reusing the color schemes from different apps does
not fully consider the style of the page where the UI widget
to be repaired is located, resulting in many patches generated
by Iris still failing to meet contrast requirements. So far, no
existing research efforts have been proposed to understand the
common practices of app developers in repairing color-related
accessibility issues.

To address the research gap mentioned above, we conducted
an empirical study on 202 real-world color-related accessibility
issues. Our aim was to understand the strategies that app
developers use to fix these issues, focusing on how they modify
the app code and select appropriate colors for issue repair.
Based on the above findings, we propose DroidPalette, an
automated approach for repairing color-related accessibility
issues in Android apps. Specifically, DroidPalette selects issue-
fixing colors for buggy UI components by referencing Ul
components with similar attribute configurations on a Ul page.
This is mainly because 91.09% (=184/202) of the issues in
our empirical dataset were resolved using this strategy. To
generate effective patches that can adjust the color of buggy
Ul components, DroidPalette utilizes knowledge from the
Android framework and third-party libraries to create a ranked
list of attributes that can be potentially used to fix the issue.

The generated patches are further validated by applying them
and observing their runtime visual appearance.

We applied DroidPalette on 105 real-world Android apps
to evaluate its effectiveness. The experimental results showed
that DroidPalette can successfully repair 331 out of 497 valid
issue reports generated by Xbot, achieving a success rate of
66.60% in issue repair. To investigate whether our patch is
acceptable to app developers and users, we conducted a user
survey on open-source Android apps to collect feedback from
both developers and users. We found that DroidPalette received
positive feedback from app developers and users on fixing
color-related accessibility issues, indicating that DroidPalette
can efficiently resolve such issues. So far, we have submitted
13 pull requests, among which 8 have already confirmed our
fixes, showing the usefulness of DroidPalette.

In summary, our main contributions are as follows:

« To the best of our knowledge, we are the first to conduct an
empirical study on the repair of color-related accessibility
issues.

o We propose DroidPalette, an approach that can eliminate
color-related accessibility issues in Android apps.

o We evaluated DroidPalette on real-world Android apps, and
the results demonstrate its effectiveness and usefulness in
repairing color-related accessibility issues.

II. BACKGROUND
A. Android Ul

The user interface (UI) of an Android app is composed
of View and ViewGroup components structured in a tree-like
hierarchy. Typically, an app contains one or more Activities
(screens), each of which consists of multiple instances of
View and ViewGroup. Specifically, ViewGroup serves as the
container for other views and to define layout attributes that
determine the positioning of child views on the screen. On
the other hand, View is the core Ul element used to define Ul
components such as TextView, ImageView, and others. App
developers usually control the runtime behavior, such as the
visual appearance, of View and ViewGroup by modifying the
attribute configurations of XML elements within project XML
files.

B. Color-Related Accessibility Issues

In Android app design, color plays a crucial role not only
in aesthetics but also in ensuring accessibility. Poor color
contrast can significantly hinder the user experience for elderly
users, people with visual impairments, or those with other
vision-related disabilities. To meet accessibility requirements,
the Web Content Accessibility Guidelines (WCAG) [17] have
specified that the contrast ratio for regular text (text smaller
than 18pt or bold text smaller than 14pt) should be at least
4.5:1. For large text (text larger than 18pt or bold text larger
than 14pt) or non-text elements (e.g., images), the minimum
contrast requirement is 3:1. However, when the contrast of the
UI components defined within a Ul page does not meet the
requirements, users may be unable to identify key information



Image contrast

OneBusAway:id/route_info_loading_spinner

The item's text contrast ratio is 1.07. This ratio is based on an estimated
foreground color of #5DB53B and an estimated background color of #4CB050.
Consider increasing this item's text contrast ratio to 3.00 or greater.

Fig. 2: The issue report about Figure 1(a) generated by Xbot.

in the image, causing color-related accessibility issues that
pose a major barrier for app users.

III. MOTIVATING EXAMPLE

In this section, we focus on evaluating the state-of-the-art
methods to identify their limitations in repairing color-related
accessibility issues. We chose Iris [15], which is the state-
of-the-art approach to repair color-related accessibility issues
in Android apps, as the baseline. Specifically, the issue-repair
process of Iris relies on a database that contains color schemes
collected from a large corpus of open-source and closed-source
Android apps. It then uses these schemes along with a set
of hardcoded rules to edit the app’s XML configuration files
and generate patches. Additionally, we aim to explore the
capability of large language models in repairing color-related
accessibility issues. We selected GPT-40 [18], a popular mul-
timodal large language model that can process both text and
images as inputs to complete specific tasks. Specifically, we
provide an issue report that includes the view hierarchy of the
UI pages to pinpoint the buggy UI components, screenshots of
the UI pages, and the corresponding XML configuration files.
GPT-40 then generates patches for the XML configuration files
to repair the color-related accessibility issues.

We applied Iris and GPT-4o0 to the issue illustrated in Figure
1 in order to evaluate their effectiveness based on two criteria:
their ability to select appropriate colors for issue repair and
their effectiveness in generating plausible patches to adjust the
colors of buggy UI components. This allows us to understand
the limitations of existing approaches and better illustrate the
intuition of our proposed approach.

A. Color Selection Process

For the issue shown in Figure 1, Iris chose black to fix the
buggy progress bar. The result, shown in Figure 4(b), differs
from the solution provided by the app developers. This is
because Iris’s issue repair process mainly relies on selecting
colors from a reference database. Although Iris considers the
harmony of the UI page when selecting an issue-fixing color, if
the developer’s desired color is not in the database, Iris cannot
find that color to use as the issue-fixing color. Our user study
in Section VI also highlights this issue.

For GPT-40, despite providing contextual information such
as the view hierarchy and screenshots of the problematic Ul
components and the Ul page, we found that the colors selected
by GPT-4o to fix color-related accessibility issues still have
the following limitations: (1) Due to the randomness of large
language models, GPT-40 does not consistently produce the
same results; (2) Although it can consistently produce the
same results for some issues, the lack of understanding of
app developers’ strategies for fixing color-related accessibility
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activity_main.xml
01 <EditText

02 android:id="@id/editTextProzent"
o3 android:layout_height="48dp"
04 android:layout_width="60dp"
// Anincorrect patch generated by GPT-40
\05 + android:textColor="#EGEGE6"

// A correct patch generated by DroidPalette
[66 +  android:textColorHint="#EGE6E6" |

o7 éﬁéroid:hint:"@string/percent_alcohol_edittext"/>
(©
Fig. 3: This issue originates from the VPC [19]. Specifically:
(a) UI with color-related accessibility issues, (b) The UI after
being repaired with the correct patch, (c) Different patches
generated by GPT-40 and DroidPalette.

issues leads to solutions that differ from those provided by
the developers, and sometimes even fail to meet the contrast
standards specified by WCAG. For example, the color chosen
by GPT-40, as shown in Figure 4, failed to resolve the
accessibility issues caused by color contrast.

To address the aforementioned limitations, DroidPalette an-
alyzes real-world patches for color-related accessibility issues,
distills the actual color adjustment preferences adopted by
developers, and incorporates these insights into its color selec-
tion strategy. Specifically, when selecting issue-fixing colors,
DroidPalette not only considers the original color scheme
of the buggy UI component, but also examines the color
usage of other components on the same page. This ensures
that the chosen colors not only meet contrast requirements
but also better maintain consistency with the overall color
scheme of the UI page. For instance, when resolving the issue
demonstrated in Figure 1(a), DroidPalette comprehensively
evaluates both the original color scheme and color harmony
with other page components, ultimately adopting the solution
consistent with the developer’s fix shown in Figure 1(b) (see
Section IV-B for details).

B. Patch Generation Process

We further examined the capabilities of Iris and GPT-4o
in generating patches that can adjust the color of buggy Ul
components at the code level. Specifically, Iris integrates only
a set of predefined rules to generate a patch. Consequently,
Iris fails to adjust the color of the progress bar because the
predefined rules do not cover all possible attributes (such as
android:indeterminateTint) that can lead to color-
related accessibility issues. As for GPT-4o, although it can
recommend android:indeterminateTint as the issue-
fixing attribute, it still suffers from hallucinations and gen-
erates incorrect patches. Figure 3 shows such a case from
VPC [19], where GPT-40 leverages android:textColor



Fig. 4: (a) The effectiveness of GPT-40’s color selection for
the issue shown in Figure 1. (b) The effectiveness of Iris’s
color selection for the issue shown in Figure 1.

instead of android:textColorHint to adjust the insuf-
ficient color contrast between text hints and the background
color.

To address the aforementioned issue, DroidPalette first
recommends candidate issue-fixing attributes from the Android
framework and third-party libraries that can potentially be
leveraged to fix color-related accessibility issues. Then, in
the process of generating patches, DroidPalette dynamically
monitors the visual appearance of buggy Ul components to de-
termine whether the selected candidate attributes can be used
to adjust the color of the buggy UI components. Compared
to Iris, DroidPalette eliminates the need for manually defining
rules on the issue repair process. For example, when fixing the
issue shown in Figure 3, DroidPalette successfully identified
the android:textColorHint attribute from the Android
framework as effective to change the color of the buggy text
contrast.

IV. COLOR SELECTION STRATEGY OF APP DEVELOPERS

To the best of our knowledge, there is no existing effort
exploring developers’ preferences when choosing colors to
fix color-related accessibility issues. Thus, we conducted an
empirical study to understand the strategies developers use to
address these issues.

A. Dataset Collection

We selected open-source Android projects from GitHub as
our study subjects because these projects make publicly avail-
able the issue reports and their patches. Our data collection
process is as follows: First, we searched the entire GitHub
platform using the keyword “color fix” to identify pull
requests merged by developers. We restricted the programming
languages of the pull requests to Kotlin, Java, and XML to
ensure their relevance to Android apps. We excluded projects
with fewer than 100 stars, resulting in a total of 1,629 commits
being collected. Next, we manually excluded pull requests that
were unrelated to color-related accessibility issues in Android
projects. In the end, we identified a total of 202 pull requests
across 63 projects. The selected projects demonstrate diversity
in terms of popularity and scale, with the average number of
stars for the projects being 3,171 (ranging from 110 to 50.4K),
and the average code size being 244K LOC (ranging from
6.9K to 1.9M LOC).

We conducted the data analysis on the aforementioned 202
color-related accessibility issues as follows. Initially, we ran-
domly selected a sample of 101 issues, representing 50% of the
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Fig. 5: The issue originates from the WordPress [20]. Specif-
ically: (a) UI page with color-related accessibility issues, (b)
The issue repair by adjusting the lightness.

total dataset. Two authors, each with two years of experience
in Android app development, independently examined the
code revisions and associated issue reports to pinpoint code
snippets pertinent to the patches. A preliminary taxonomy
was developed by compiling the findings of both authors
and resolving discrepancies through discussions. Subsequently,
the authors labeled the remaining 101 issues in an iterative
manner, engaging in discussions to refine the preliminary
taxonomy and address any conflicts. The final results were
achieved once both authors reached an agreement on the
taxonomy and the labeling of the empirical dataset.

B. Results

We analyzed these 202 identified patches and summarized

the developers’ choice of issue-fixing colors, which are cate-
gorized as T1 to T3.
T1: Selecting Colors within the UI Page. We identified 150
issues where the issue-fixing color was chosen within the same
page. This strategy ensures that the selected issue-fixing color
can maintain visual consistency with the original Ul page. As
illustrated in Figure 1, to fix the color of the buggy progress
bar, app developers chose white, referencing the color of other
UI components with similar visual features on the same UI
page, as the issue-fixing color.

Based on the location of the Ul component where the issue-
fixing color is applied, we further derive the following two
issue-fixing color selection strategies of app developers:

o T1.1: UI Component with Same Alignment. 129 issues
were resolved by selecting colors from UI components
that were aligned with the problematic ones. Typically, Ul
components that are aligned together either share the same
parent XML element or are located close to each other
in the view hierarchy. This approach works because Ul
components that meet these criteria usually have similar
visual feature definitions, which help maintain a consistent
color appearance with other Ul components on the same
page.

o T1.2: UI Component with Similar Attribute Configura-
tion. 104 issues were addressed by selecting colors from Ul
components with similar attribute configurations in XML
files. Components meeting these criteria generally share
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Fig. 6: This issue originates from the breezy-weather [21].
Specifically: (a) UI with color-related accessibility issues, (b)
Repair color-related accessibility issues by selecting colors
outside the UI page.

similar visual feature definitions, which help preserve a
consistent color appearance.

It should be noted that the two aforementioned strategies can
be implemented simultaneously by developers, so the sum of
these two subcategories does not necessarily match the number
of issues in T1.

T2: Adjusting the Lightness of the Issue-Inducing Color.
We identified 34 issue reports where app developers repaired
color-related accessibility issues by adjusting the lightness
of the issue-inducing color. The chosen issue-fixing color
stays within the same hue as the issue-inducing color, thus
preventing any disharmony with the UI page’s overall color
scheme. For example, the issue in Figure 5, extracted from
WordPress [20], shows such a case where the app developer
changed the icon’s color from light gray to dark gray in
(a), thereby enhancing the icon’s contrast against the white
background.

T3: Introducing New Colors. We identified 18 issue reports
where app developers introduced issue-fixing colors that were
not present in the UI page. Figure 6 shows such an example
originates from breezy-weather [21], where the app developers
used light blue instead of light purple to enhance the contrast
of the UI component against a black background. We catego-
rize this as T3, because this light blue does not appear in the
Ul page.

V. APPROACH

In this paper, we propose DroidPalette, a dynamic approach
for repairing color-related accessibility issues in Android apps.
DroidPalette works by editing attribute configurations in XML
files, which are primarily used to construct the apps’ UL We
chose to adopt such a strategy because 71.29% (144/202) of
the empirical dataset utilized this approach, in line with the
practices established by Zhang et al. [15].

Prior work [15] on repairing color-related accessibility
issues has the following major limitations: (1) their color se-
lection strategy relies on a database of UI components’ colors
collected from a large corpus of Android apps, which cannot
provide the fixes aligned with app developers’ expectation
when the issue-fixing color is not present in this database,
and (2) the patch generation process relies on hardcoded
rules, therefore lacking a comprehensive understanding of
all possible attributes that could be used to fix color-related
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Fig. 7: Overview of the DroidPalette.

Algorithm 1: Color Selection Process
Input: View hierarchy V I of the page P, buggy Ul
component u, Color Reference Database DB
Output: The issue-fixing color cpst
1 C+ 0
2 foreach u,, located in P do
L Add the foreground color of u, to C;

4 C + CUTopN_cpp Score(u, c);
5 Cpest < null;

6 score = 0;
7
8
9

w

foreach c € C do
Adjust the lightness of c;
if score < Score(u, c) then

10
11

12 return cCpesy;

Chest < C;
score = Score(u, c¢);

accessibility issues, making it impossible to change the color
of buggy UI components by modifying the XML configuration
files. In light of the above limitations, DroidPalette takes the
following actions: (1) encoding the common color selection
strategies observed in Section IV to generate issue-fixing col-
ors, and (2) identifying candidate issue-fixing attributes from
the Android framework and third-party libraries, finalizing
the generated patch based on the runtime behavior of these
candidate attributes.

The overview of DroidPalette is as follows. Given the app
under test (AUT) and its corresponding issue reports generated
by Xbot, which includes the UI screenshots, the identified
foreground and background colors of buggy Ul components,
and the view hierarchy of UI pages where the buggy Ul
component locates, as inputs, DroidPalette outputs a patched
APK file that eliminates the color-related accessibility issue
in the buggy Ul components. The issue-fixing process in
DroidPalette consists of two main stages. In the first stage,
DroidPalette selects and fine-tunes a ranked list of candidate
colors to choose the optimal issue-fixing colors. In the second
stage, DroidPalette selects candidate issue-fixing attributes
from the Android framework and third-party libraries, and
monitors the visual appearance of each generated patched
XML file to fix color-related accessibility issues.



A. Color Selection Strategy

DroidPalette first selects an issue-fixing color for Ul com-
ponents with color-related accessibility issues. As discussed
in Section IV, the issue-fixing color is typically either derived
from the color of the same Ul page or achieved by adjusting
the lightness of that color. This approach ensures that the
selected issue-fixing color aligns with the style of the UI pages.
Therefore, DroidPalette incorporates the common strategy
used by app developers for choosing candidate issue-fixing
colors, using a fitness score to evaluate how well the chosen
issue-fixing color blends with the overall style of the UI page.
In case when DroidPalette fails to identify issue-fixing color
from the above process, DroidPalette integrate Iris’s reference
database as an extra list of candidate issue-fixing color to
address the issues related to T3.

Algorithm 1 shows the process of DroidPalette in selecting
issue-fixing colors. There are two steps involved: (1) Droid-
Palette first generates a set of candidate issue-fixing colors
that not only can improve the color contrast of UI pages but
also align with the original design style of the original UI
components (Lines 2-4); (2) DroidPalette then keeps adjusting
the lightness of each candidate issue-fixing color, and encodes
a fitness score to evaluate overall consistency and harmony of
the page design, and to output an issue-fixing color with the
highest fitness score (Lines 7-11).

Fitness Score Calculation. To evaluate whether a candidate
color can match with other colors on a Ul page, a fitness score
is proposed. The design of the fitness score is based on our
empirical finding that app developers typically consider issue-
fixing colors by considering the alignment, color, and attribute
configuration similarity of Ul components in the same page.
Specifically, for a given issue-fixing color ¢ of a buggy Ul
component u located in the UI page P, the fitness score Score
is calculated by the average of similarities between u and all
the UI components up in Up (all Ul components in P) as
follows:

L
|Up|

Score(c,u) =

Z (P(u,up) x A(u,up) x C(c,up))

upeUp
(L

Specifically, P measures the distance between u and up
in the view hierarchy of the page, based on the intuition that
UI components positioned closer together are more likely to
share similar colors. Therefore, P is calculated by measuring
the edit distance Dist of view hierarchy V H in P as follows:

P = ! 2
(1, u2) = 1+ Dist(uy,us, VH) @

A(uq,u2) measures the similarity in attribute configuration
by calculating the proportion of shared attributes between w4
and uy as follows:

_ [A(w) 0 A(us)|
[A(u1) U A(un)|

C(c,u) calculates the color similarity between ¢ and the
foreground color ¢y of u as follows:

A(U17U2) 3)

Contrast(c,u)

C<C’ u) - 1+ DHSL(Ca ’U,.Cf)

4)

Here, Contrast(c,u) denotes the color contrast of u when
applying ¢ as the foreground color. Dysy,(c1,co) represents
the differences in hue, saturation, and lightness, reflecting
human color perception as per the practices of Zhang et al [15].

Candidate Issue-Fixing Color Selection. With the above
fitness score, DroidPalette then selects appropriate colors for
repairing color-related accessibility issues in the UI based
on the feedback of fitness score. DroidPalette first chooses
colors from the page and reference database of Iris [15]
as candidate colors, and then calculates the scores of these
candidate colors using Equation 1. When using the reference
database, DroidPalette selects the top-N (N is set to 5 by
default) colors according to the fitness score illustrated in
Equation 1 and adds them to the candidate color set C' (Line
4).

DroidPalette then adjusts the lightness of the candidate color
for fine-tuning, following our research findings in Section
IV. Specifically, DroidPalette adds a random delta value in
a small value range (i.e., (0,d%]) to its lightness value from
the starting point. Initially, d is set to 1. DroidPalette expands
d exponentially if the Score is improved. If the Score is not
improved, DroidPalette switches to the opposite direction (i.e.,
[-d%, 0) value range) from the current value and resets d to
1. A candidate issue-fixing color is generated if there is no
fitness score improvement in all exploratory directions (i.e.,
local optima). When the lightness adjustment reaches a critical
threshold (< 10% or > 90%), the original color characteristics
can be lost, and the color is therefore considered invalid.
Finally, among the colors that satisfy the color contrast criteria
of WCAG, DroidPalette selects the issue-fixing colors that
achieve the highest fitness score.

B. Patch Generation

DroidPalette then aims to apply the selected issue-fixing
color in the app’s XML configuration files to generate a patch.
Algorithm 2 illustrates the process. Specifically, given the
buggy UI component U in the view hierarchy V H as inputs,
DroidPalette identifies a set of candidate XML elements X as-
sociated with U (Line 1). Then, for each XML element x € X,
DroidPalette attempts to identify a set of candidate issue-fixing
attributes A = {ay, ..., ay} from both the Android framework
and the third-party libraries (Lines 3-4). At last, DroidPalette
evaluates the visual effects after applying the issue-fixing color
to each candidate issue-fixing attributes in order to generate
the patch (Lines 5-9).

For the UI component U, DroidPalette first identifies a set
of XML elements X = {x1, ..., x, } that can affect the runtime
behavior of U. Specifically, X includes the following types of
XML elements.

e The XML element X,, that defines the UI component U.
Specifically, X, can be localized by matching (1) IDs, and
(2) text between view hierarchy and the XML configuration



Algorithm 2: Patch Generation Process

Input: View hierarchy V H, target Ul component U
Output: Generated patch Patch

1 X < findCandidateXMLElements(V H, U);

2 foreach z € X do

3 A < identifyFixAttributes(z);

4 foreach a € A do

5 Crew < computelssueFixingColor(x, a);
6 a’ < applyColorChange(z, a, Cpew);

7 if evaluateVisualEffect(V H,z') then

8 P «+ generatePatch(z, a, cpew);

9 L return Patch;
10 return 0 ;

files, following the existing practices proposed by Zhang et
al. [15].

o The parent nodes of X,. This is primarily because the
configuration of attributes in parent nodes directly affects
the performance and behavior of child nodes.

e The XML elements that are referenced by X,.
For example, an XML element can specify
android:src="Q@drawable/d" to reference the

drawable element with the ID named d, which is defined
from other XML configuration file.

After successfully locating the candidate XML elements,
DroidPalette further identify candidate issue-fixing attributes
A for each XML element x. An attribute a will be included
in A if (1) it is configurable in z, and (2) if it accepts values in
the color data format. Such the above design is based on the
issue-fixing practices of 71.29% (144/202) issues we observed
in the empirical dataset. To achieve this goal, DroidPalette
first collects a list of all candidate attributes that meet the
above conditions from the Android framework and third-party
libraries on which the app depends. Sepcifically, the candidate
issue-fixing attributes are obtained using the method proposed
by ConfDroid [12], which performs static slicing on the code
that processes XML elements within the Android framework
and third-party libraries to identify candidate list of color-
related attributes related to the color of the issue-inducing Ul
component. Therefore, compared with existing approach [15],
DroidPalette does not require manually maintaining these
rules in case when the Android framework or its third-party
libraries are evolved. Then, DroidPalette assigns the value of
the selected issue-fixing color to these candidate attributes one
by one and dynamically tests whether the candidate attribute
can successfully modify the color of the buggy UI component.

It is noted that DroidPalette only attempts to use one issue-
fixing attribute in the generated patches. It shows threats that,
in practice, there are issues whose fix relies on multiple issue-
fixing attributes. However, we did not find such cases in our
empirical dataset.

VI. EVALUATION

We implemented DroidPalette based on UlAutomator2 [22],
an open-source Ul testing framework for Android apps. We
explore the following research questions to evaluate Droid-
Palette:

« RQ1 (Effectiveness): What is the effectiveness of Droid-
Palette and the baseline methods in fixing color-related
accessibility issues in Android apps?

« RQ2 (Ablation Study): How do DroidPalette and the
baseline methods perform specifically in the color selection
and patch generation processes?

o RQ3 (Usefulness): Are the patches generated by Droid-
Palette well-received by both Android app developers and
users?

A. Evaluation Subjects

We collected the evaluation subjects as follows. First, we
selected 650 apps from the F-Droid to serve as our initial
dataset. To further refine the dataset, we only kept apps with
more than 10 stars to ensure the popularity of our selected app
subjects. The above process in total results in a final dataset
of 105 apps. The distribution of stars of these selected apps is
wide-ranging, with an average of 857. Additionally, 30 apps
have 500+ stars, and 17 apps have 1,000+ stars.

We ran Xbot on the collected 105 apps, resulting in a
total of 497 issue reports. These reports were then categorized
according to the color contrast requirements for different types
of UI components as specified in WCAG [17]. This resulted in
340 issue reports for regular text, 73 issue reports for large text,
and 84 issue reports for non-text elements (i.e., meaningful
images). Then, we ran Xbot on the repaired APK files. If
Xbot no longer reported an issue, the issue was considered
fixed. Such the above process is based on existing practices
for handling UI accessibility issues [15]. We avoided using
manual annotation due to its subjectivity.

B. Baselines

We compared DroidPalette with the following baselines:

o Iris: The state-of-the-art approach for repairing color-related
accessibility issues [15]. The issue repair process of Iris
primarily relies on a referenced database extracted from a
large number of apps.

¢ GPT-40: One of the most popular multi-modal large models
released by OpenAl [18]. We evaluated the effectiveness of
GPT-40 by providing it with (1) an issue report, (2) the
buggy XML configuration file, and (3) a screenshot, and
then allowing GPT-40 to generate a patch for the buggy
XML configuration files. We repeat GPT-40 three times to
reduce the randomness of its output, and consider GPT-
40 successfully repairs an issue if it consistently output
the same result that eliminate the color-related accessibility
issues. The prompt is set as follows:
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Fig. 8: This issue originates from the RoMote [23]. Specifi-
cally: (a) UI with color-related accessibility issue, (b) Repair
this color-related accessibility issue by DroidPalette.

<unknown ssid>

The highlighted Ul components in the image have color-
related accessibility issues. The detection report provides
details on these components, and the XML files include
their layout and resource information. Please propose a
patch on the XML file with replacement colors ensuring
at least a 3:1 contrast ratio for large text and non-text
elements, and at least 4.5:1 for regular text.

C. RQI: Effectiveness

Effectiveness of DroidPalette. Table I shows the results of
the study. DroidPalette successfully repaired 331 out of 497
identified color-related accessibility issues, achieving a success
rate of 66.60%. Specifically, it fixed 245 issues of regular
texts, 51 issues of large texts, and 35 issues of non-texts.
Figure 8 provides an example originates from RoMote [23]:
in Figure 8(a), the original issue was a black title on a purple
background, which made the text difficult to read. DroidPalette
addressed this by changing the issue-inducing color to white,
along with other text on the same UI page. These results
indicate that DroidPalette is effective at improving insufficient
color contrast in the Ul components of Android apps.

On the other hand, DroidPalette failed to repair the remain-
ing 166 issues, including 95 issues of regular texts, 22 issues
of large texts, and 49 issues of non-text elements. Among
these, there are issues that could not be fixed because the
Android framework or third-party libraries does not provide a
publicly-available XML attribute to adjust the color. Figure 9
from EnforceDoze [24] illustrates such an example. As shown
in Lines 10-12, app developers fixed the issue by adjusting
the app’ code of creating and customizing alert dialogs us-
ing Material Design styles, where the “Okay” button of the
dialog is controlled by the Android framework. Therefore,
DroidPalette fails to fix this issue since the confirm button
is a pre-defined component of the Android framework and
does not provide an XML attribute to adjust its color. The
above example also highlights the challenges of fixing bugs at
the Java/Kotlin source code level: (1) accurately locating the
issue, and (2) handling complex API invocations. Given that
this repair strategy is relatively complex and is only required
in a small fraction of real-world development scenarios, we
leave the exploration of this approach to future work.

Effectiveness of Baselines. Table I shows the effectiveness
of Iris and GPT-40 in repairing color-related accessibility
issues. Specifically, Iris successfully repaired 198 color-related
accessibility issues, achieving a success rate of 39.84%. Iris

android.permission.READ_LOGS' (without
guotes)

Okay

(€Y
01 MaterialAlertDialogBuilder builder = new MaterialAlertDialogBuilder(LogActivity.this);
02  builder.setTitle(getString(R.string.error_text));
@3  builder.setMessage(getString(R.string.read_logcat_su_not_avail_or_denied_error_text));

04  builder.setPositiveButton (iet_string R.string.okay_button_text), new
DialogInterface.OnClickListener() {

o5 @override

06 it oid onClick(DialogInterface dialogInterface, int i) {
o7 dialogInterface.dismiss();

08 }

09 });

10 + androidx.appcompat.app.AlertDialog dialog = builder.show();
11 + Button positiveButton = dialog.getButton(AlertDialog.BUTTON_POSITIVE);
12 + positiveButton.setTextColor(Color.parseColor("#000000"));

(b)
Fig. 9: This issue originates from the EnforceDoze [24].
Specifically: (a) The “Okay” button in the alert dialog, (b)
The Material Design style implementation that controls the
“Okay” button.

—

Fig. 10: This issue originates from the ttrss-reader-fork [25].
GPT-40 recommended white as the color, which had no effect
on the buggy UI component.

failed to repair 133 issues that were successfully repaired
by DroidPalette due to the following two reasons: (1) Iris’s
hardcoded rules for generating patches are only designed
for five basic components (e.g., TextView, Button, etc.).
For UI components from the Android framework components
and third-party libraries, Iris cannot correctly identify the
valid issue-fixing attributes, resulting in failures for repairing
color-related accessibility issues; (2) the effectiveness of Iris’s
repairs depends on the completeness of its reference database.
When the reference database lacks suitable alternatives, it
leads to the failure of the issue-fixing color selection strategy
(see Section III for more details), and may even cause the
issue-fixing color found in the database to not meet the color
contrast requirements of WCAG.

As for GPT-4o, it can successfully repair 129 color-related
accessibility issues, achieving a success rate of 25.96%. On
the other hand, GPT-40 failed to generate patches for 368
color-related accessibility issues due to the following reasons:
First, despite receiving the same results for multiple issues,
the generated issue-fixing colors still did not eliminate the
issues caused by insufficient color contrast. Figure 10 shows
an example of such cases. Specifically, in the Ul page from
ttrss-reader-fork [25], the “CLOSE” button and the “WANT
TO DONATE?” button has color-related accessibility issues.
However, the issue-fixing color recommended by GPT-4o0 is
the same as the original color (both are white) in three runs.
Second, due to the randomness of GPT-40’s output, even
though we explicitly provided screenshots, Ul hierarchy, and



TABLE I: The repair results of DroidPalette, Iris and GPT-40

Type Dataset \ DroidPalette  Iris GPT-40 \ DroidPalette. Iris. GPT-40. \ DroidPalette, Iris, GPT-40,
Total 497 ‘ 331 198 129 ‘ 497 457 344 ‘ 331 230 192
Regular Text 340 245 180 122 340 318 278 245 199 167
Large Text 73 51 18 5 73 60 33 51 30 22
Non-Text 84 35 0 2 84 79 33 35 1 3

asked GPT-4o0 to repair color-related accessibility issues in a
buggy UI component, GPT-40 fails to consistently output the
results that can eliminate the insufficient color contrasts when
repeating the experiments three times. Third, when generating
patches, GPT-40 tends to hallucinate by using attributes that
cannot actually adjust the visual appearance of buggy Ul
components. The screenshot and the code changes illustrated
in Figure 3 shows a case extracted from VPC [19] where
GPT-40 fails to patch. As we can see, there are two color-
related accessibility issues induced by the hint colors in edit
texts, which have insufficient color contrast. However, GPT-40
chose android:textColor, which cannot actually adjust
the text hint color in edit texts. On the other hand, DroidPalette
can successfully repair this issue by choosing the attribute
android:textColorHint to adjust the above hint colors.

The above results show that DroidPalette outperforms the
baselines in terms of the number of color-related accessibil-
ity issues that were successfully repaired. As discussed in
Section III, for each color-related accessibility issue report,
DroidPalette first identifies Ul components with similar visual
features on the UI page and recommends an issue-fixing color.
Then, it generates patches by using attributes from the Android
framework and third-party libraries. By doing so, DroidPalette
can consistently generate patches that align the style of the Ul
page while eliminating insufficient color contrast.

D. RQ2: Ablation Study

DroidPalette consists of two main stages, so we designed an
ablation experiment combining baselines to evaluate the results
of these two stages separately. Furthermore, in the ablation
study for the Color Selection Strategy, we specifically analyzed
the usage ratios of different color selection strategies (T1-T3)
in detail.

1) Color Selection Strategy: We first evaluate the effective-
ness of the color selection strategy between DroidPalette and
baselines. Specifically, for each issue in the evaluation dataset,
we configured DroidPalette and the baselines to generate the
issue-fixing color only. We then manually adjusted the XML
configuration of the buggy UI components to check whether
the generated issue-fixing color could eliminate the insufficient
color contrast. We denote the results as DroidPalette., Iris..,
and GPT-4o.. It is worth noting that here we only focus on
whether the selected issue-fixing color can improve the color
contrast of the buggy Ul component. We provide a detailed
comparison of the user preferences for selected issue-fixing
colors among different approaches in RQ3.

The results are shown in the Table I. DroidPalette combines
the results of our empirical study with Iris’s proposed reference

database scheme, achieving a 100% success rate on the ex-
perimental dataset. Specifically, 327 color-related accessibility
issues were resolved using T1, 153 were resolved using T2,
and the remaining 17 issues were resolved by T3. Moreover,
Iris provided 457 valid replacement colors out of 497 color-
related accessibility issues, achieving a success rate of 91.95%.
In contrast, GPT-40 provided 344 valid replacement colors,
with a success rate of 69.22%. The above results shows the
effectiveness of DroidPalette in choosing valid issue-fixing
colors comparing to the baselines.

2) Patch Generation: We then proceed to evaluate the
effectiveness of the patch generation process between Droid-
Palette and baselines. Specifically, given the XML element
of the buggy UI, we let each approach recommend issue-
fixing attributes, then filled in randomly generated colors to
check whether the recommended issue-fixing attributes could
be applied to change the color of the buggy UI component and
eliminate insufficient color contrast. We denote the results as
DroidPalette,,, Iris,, and GPT-4o,,.

The results are shown in Table I. As we can see, Droid-
Palette achieved higher success rates than Iris and GPT-40
across different types of Ul components. Overall, DroidPalette
successfully identified 331 valid attributes in the Patch Gener-
ation stage, achieving a success rate of 66.60%. In comparison,
Iris and GPT-40 successfully identified 230 and 192 valid
attributes, with success rates of 46.28% and 38.63%, respec-
tively. The above results show the effectiveness of DroidPalette
in generating correct patches comparing to the baselines.

E. RQ3: Usefulness

To address RQ3, we examine the usefulness of patches
generated from both DroidPalette and the baselines from two
dimensions: app users and app developers.

User Study. We conducted a user-based study where we
asked users to compare the original and repaired Uls of
DroidPalette and the baselines. The goal of this user study
was to understand how our repairs can be acceptable from
a user’s perspective to eliminate color-related accessibility
issues. This survey covers repair patches for 10 typical color-
related accessibility issues, with each corresponding UI page
containing one or more issues. The issues in the survey were
selected as follows. First, we filtered scenarios where the
repair results of DroidPalette, Iris, and GPT-4o0 differed to
ensure the survey’s validity. Second, we prioritized 10 issue
reports with the lowest color contrast, as these issues can
have impacts on app users. The survey presented side-by-side
screenshots of the original and repaired Uls, each calibrated
to be shown in the resolution of the Pixel 5.0 mobile device



used in the experiment. The initial order of the screenshots’
placement was randomized and only labeled as Version 1,
Version 2, etc., so that respondents would not guess which tool
corresponds to each screenshot. Our survey asked respondents
to rate their preference for the visual effects of the displayed
screenshots using a five-point Likert scale, in order to evaluate
the effectiveness of DroidPalette compared to the baselines.

We conducted the survey on Amazon Mechanical Turk
(AMT), a crowdsourcing platform widely used for user studies.
For AMT participants, we limited feedback collection to
individuals over 50 years old, as according to WHO reports,
two-thirds of global cases of near-vision impairment occur
within this age group [26]-[28]. Additionally, our survey
asked participants whether they had any visual impairments.
Since our survey was conducted in English, we restricted
participation to English-speaking countries. Following the best
practices for AMT documented in prior work [29], we imple-
mented strict quality control over both the participants and
their responses. We initially selected workers with a past task
approval rate above 95% and more than 5,000 approved tasks
completed. We also excluded obviously inattentive responses,
including: (1) over 95% of answers being the same, (2)
answers following a specific pattern, and (3) page viewing
times below the minimum limit (<60s per question) or above
the maximum limit (>600s). There were 7 such cases in
our collected sample. Finally, we collected 55 valid surveys,
among which 43 indicated the presence of visual impairments,
and 12 reported none.

The user study results are shown in Figure 11. Among
responses from participants with visual impairments, 304 en-
tries considered DroidPalette’s repairs the best, 214 entries fa-
vored Iris, and 142 entries favored GPT-40. Among responses
from participants without visual impairments, 79 entries rated
DroidPalette’s repairs as the best, 42 entries favored Iris, and
30 entries favored GPT-40. Due to tied rankings, the total
number of votes for these tools may exceed the total number
of responses. DroidPalette’s repair results were consistently
ranked across both groups, coming first in eight questions
and second in the remaining two. Specifically, in these two
second-place cases, DroidPalette’s patches accounted for the
colors of other UI components on the page, resulting in slightly
lower contrast than the top-ranked repairs. This indicates
that, compared to the baseline methods, patches generated by
DroidPalette are more likely to be accepted by app users.

Feedback from App Developers. We further explored
whether the fixes for color-related accessibility issues in
Android apps using DroidPalette can be acceptable by app
developers. Different from the issue selection process in our
user study, we selected open-source Android apps in F-Droid
satisfying the following criteria: (1) with recent update within
three months because such projects are actively maintained
to receive feedback. (2) DroidPalette is capable of fixing all
color-related accessibility issues on the page where the buggy
UI component is located. We finally selected 13 open-source
apps with color-related accessibility issues from F-droid and
applied DroidPalette for the fixes. Following the practices of
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Fig. 11: User study results. The values for the three tools
respectively indicate the number of users who selected each
repair solution as the most preferred.

Zhang et al. [15], for each app, we filtered out the pages where
DroidPalette can fix all color-related accessibility issues within
the app’s UI page and submitted a Pull Request to its GitHub
repository. Through developer feedback, we aim to understand
whether DroidPalette meets developers’ requirements in terms
of issue-fixing color selection and patch generation.

The results are shown in Table II, which details the app
name, app category, Pull Request ID and the status of the Pull
Request. Of the 13 pull requests we submitted, 8 have received
positive feedback from developers, and 4 have been merged
by the original app developers. The above results indicate
the usefulness of the patches generated by DroidPalette. We
received positive feedback from app developers by providing
an example as follows:

o “Thanks for the help”, in the Pull Request #56 of Pagan [30].

We also received developers feedback from organ-
icmaps [31] that app developers confirmed our issue-fixing
strategy but the proposed patch should go through minor
revision, because the patch generated by DroidPalette failed
to consider adapting to the switching between Android’s day
and night modes in the app code. We received feedback from
the developers of disky [32], who chose not to merge our
patch. They explained that the patch we submitted did not
adequately adapt to the app’s Material You feature, which
dynamically adjusts colors based on each device’s system set-
tings. To deliver such issue-fixing strategy that app developers
expected, analyzing the app’s code would be necessary, which
is beyond DroidPalette’s capabilities. As discussed in Section
V, DroidPalette repairs color-related accessibility issues in
XML configuration files, given that XML configuration files
are the primary carriers of apps’ UL, and the majority (71.29%)
in our empirical dataset are repaired in this manner. Currently,
focusing solely on the XML configuration files has already im-
proved DroidPalette’s success rate compared to the baselines.
Considering the challenge of understanding the semantics of
app code for fault localization and repair, we plan to enhance
DroidPalette by incorporating diverse patching strategies to
repair color-related accessibility issues in app code.



TABLE II: Feedback from app developers.

App Name Category #Issue Issue State
EnforceDoze [24] System #26 Merged
KeePassDroid [33] Security #525 Merged
Pagan [30] System #56 Merged
RoMote [23] Multimedia #49 Merged
Dahdidahdit [34] Education #12 Confirmed
Imagepipe [35] Graphics #380 Confirmed
Chess [36] Games #171 Confirmed
organicmaps [31] Navigation #10630 Confirmed
disky [32] Development #35 Rejected
solxpect [37] Science #32 Pending
SkyTube [38] Internet #1360 Pending
seadroid [39] Internet #1079 Pending
Simple-Search [40] Internet #34 Pending

VII.

One key limitation of this study is that the participant
sampling for our experimental research may not adequately
represent populations affected by color perception deficien-
cies. To mitigate this concern, we specifically recruited 55
individuals aged 50 years and older.

In this study, an internal threat is that users evaluated the
UI based only on screenshots, not through direct interaction
with the mobile device’s UI settings. This could lead to gaps
between the simulated usage process and the actual user
experience. However, the research design partially addresses
this issue. It uses surveys that allow users to rate various repair
solutions and derive preference metrics from these ratings.

THREATS TO VALIDITY

VIII. RELATED WORK
A. Android Accessibility Issues

The accessibility issues in Android apps are considered one
of the main challenges faced by app developers [41]. Existing
research has explored this issue from various perspectives.
For example, Alshayban et al. [41] analyzed the prevalence,
causes, and impact of accessibility issues on user experience
from the perspectives of apps, developers, and users, and pro-
posed actionable advice to improve them. Medina et al. [42]
conducted a survey analyzing the current state of accessibility
issues, and explored future research directions and trends.
There are also existing approaches proposed for automatic
detection and repair of accessibility issues in both web clients
and mobile apps [7], [43]-[49]. For example, Lehmann et
al. [45] studied accessibility support for implementing “Total
Conversation Service” in Next Generation Networks (NGN),
particularly for individuals with hearing, speech, or visual
impairments. Ferati et al. [46] emphasized the importance
of usage contexts and cultural dimensions in accessibility,
pointing out the need for personalized solutions designed
according to the specific needs of blind and visually impaired
individuals. Eler et al. [47] introduced MATE, an automated
tool capable of identifying more accessibility issues than static
analysis tools (such as Android Lint) and frameworks that rely
on existing test cases (such as Espresso). Alshayban et al. [7]
designed AccessiText, a tool focused on detecting text acces-
sibility issues in Android apps, especially in situations where

there is incompatibility with text scaling assistive services.
Salehnamadi et al. [48] developed Latte, which can reuse UI
test cases written by developers to assess the accessibility of
apps.

In view of the prevalence of color-related issues, there
are existing approaches available to detect and fix them.
Specifically, Chen et al. [4] developed Xbot, which integrates
Google Accessibility Scanner to detect color-related accessi-
bility issues in Android apps. Zhang et al. [15] introduced
Iris, the first automated tool for addressing color-related ac-
cessibility issues in Android apps. As illustrated in Section III,
existing approaches often fail to generate correct path when the
issue-fixing colors are not actually in its referenced database.
DroidPalette tackles the above limitation by encoding the app
developers’ practices during the issue repair process, thus
enhancing the success rate on its generated patches.

B. Visual-based Issue Repair

There are existing approaches that focus on repairing is-
sues related to visualization in Ul-based software [50]-[55].
Specifically, XFix [53] repairs compatibility issues in layout
of web pages. MFix [54] and MobileVisFixer [50] repair
mobile-friendly issues in web pages. CBRepair [51] repairs
internationalization presentation issues. ConfFix [52] repairs
incompatibilities in apps’ Ul pages. However, the scope of the
above approaches goes beyond the automatic repair of color-
related accessibility issues. Therefore, this study conducts a
study on the repair practices of color-related accessibility
issues, and further proposes DroidPalette to automatically
repair these issues.

IX. CONCLUSION

In this paper, we conduct an empirical study on the prac-
tices developers use to fix color-related accessibility issues
in Android apps. Based on the empirical finding, we further
introduce DroidPalette, an automated approach designed to fix
color-related accessibility issues in Android apps. Evaluation
results indicate that DroidPalette can effectively resolve color
accessibility issues while receiving positive feedback from
both app users and developers. In the future, we plan to
enhance the capability of DroidPalette in repairing color-
related accessibility issues by editing the apps’ code.

DATA AVAILABILITY

We have released the code of DroidPalette and the empirical
study results on GitHub [56], and provided the dataset we used
(i.e., 105 APK files) on Google Drive [57].
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