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ABSTRACT
XML configuration files are widely-used to specify the user inter-
faces (UI) of Android apps. Configuration compatibility (CC) issues
are induced owing to the inconsistent handling of such XML con-
figuration files across different Android framework versions. CC
issues can cause software crashes and inconsistent look-and-feels,
severely impacting the user experience of Android apps. However,
there is no universal solution to resolve CC issues and app devel-
opers need to handle CC issues case by case. Existing tools are
designed based on predefined rules or visual features that are possi-
blymanifested by CC issues. Unfortunately, they can fail or generate
overfitting patches when the CC issues are beyond their capabil-
ities. To fill the above research gaps, we first empirically studied
the app developers’ common strategies in patching real-world CC
issues. Based on the findings, we propose ConfFix, an automatic
approach to repair CC issues in Android apps. ConfFix is driven by
the knowledge of how an XML element is handled inconsistently in
different versions of the Android framework and generates patches
to eliminate such inconsistencies. We evaluated ConfFix on a set
of 77 reproducible CC issues in 13 open-source Android apps. The
results show that ConfFix outperforms baselines in successfully
repairing 64 CC issues with a high precision. Encouragingly, the
patches for 38 CC issues have been confirmed and merged by app
developers.

CCS CONCEPTS
• Software and its engineering→ Software evolution.
∗Yepang Liu is affiliated with both the Department of Computer Science and Engi-
neering and the Research Institute of Trustworthy Autonoumous Systems, Southern
University of Science and Technology.
†Shing-Chi Cheung is the corresponding author.
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1 INTRODUCTION
XML configuration files are widely used in Android apps to render
user interfaces (UIs) and provide essential information for execu-
tion. However, configuration compatibility issues (CC issues
for short) can be incurred when the processing of these configura-
tion files is inconsistent across different Android API levels, which
refers to a major Android framework version (e.g., API level 28
for Android 9). Changes relating to the processing of XML con-
figuration files are common in the Android framework [43]. CC
issues induced by such changes can incur poor user experiences in
Android apps, such as crashes and inconsistent look-and-feel [43].
Therefore, it is vital for developers to handle CC issues in their apps
properly.

Figure 1 shows an XML element that induces CC issue (a.k.a.,
issue-inducing XML element) extracted from Issue #15886 ofMozilla
Fenix [29], an open-source Android web browser receiving 6.4k+
stars. The app uses the android:lineHeight attribute in Line 4
to keep the text view’s line height at 20sp. The CC issue occurred
when the app developer allowed users of older model devices to
run the app at an API level earlier than 28. This is because the
android:lineHeight attribute was newly introduced by API level
28. To fix the issue, the app developer leveraged the domain knowl-
edge that line height is the sum of text size (android:textSize
in Line 3 of Figure 1) and line spacing, as shown in Figure 2. It
allows the use of another attribute called android:lineSpacing-
Extra in Line 5 to replace android:lineHeight. Therefore, the
attribute android:lineSpacingExtra is set to 4sp for a line height
of 20sp. By doing so, no compatibility issues occur as the attribute
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<TextView
android:id="@+id/mozac_browser_tabstray_title"
……
android:textSize="16sp"
android:lineHeight="20sp"
android:lineSpacingExtra="4sp"
tools:text="Firefox"/>

01
02

03
04 -
05 +
06

Not available at API level < 28.

Figure 1: The code example adapted from Mozilla Fenix Is-
sue #15886 [29].

A Text size

android:lineSpacingExtra

android:lineHeight

Figure 2: The process of app developers in adjusting the line
height of the text view [29].

android:lineSpacingExtra has existed since API level 1. How-
ever, handling CC issues in Android apps needs to address two
challenges.

First, the manual effort of issue detection can be non-trivial given
the large number of XML elements and attributes in a typical An-
droid app [43]. Many CC issues manifest themselves as the incorrect
rendering of UIs, whose detection often involves human judgment.
Diagnosing the XML elements and attribute configurations account-
able for a CC issue is labor-intensive. Fortunately, the diagnosis
effort can be mitigated through existing approaches (Lint [20] and
ConfDroid [43]), which detect CC issues with issue-inducing ele-
ments and attributes.

Second, adapting an app to work on a set of API levels often
involves resolving the CC issues arising from the evolution of the
Android framework. For example, we found 1,017 usages of 21
public attributes introduced at API level 28 among 93 of 100 top-
ranked Android apps. These usages are subject to CC issues at an
API level below 28. However, there is no universal solution available
to resolve CC issues, and app developers need to diagnose the issues
and resolve them case by case. In our empirical investigation of 196
real CC issues, we observed six different patching strategies adopted
by app developers (See Section 3). The issue fixing also requires
domain knowledge to make the Android framework process issue-
inducing elements and attributes consistently across API levels. The
relevant Android API documents, such as Android Developers [6]
and Android API Differences Reports [5], rarely document XML
configuration changes that can induce CC issues [43]. Patches vary
from case to case. The issue repair is labor-intensive, considering
the intensive usage of attributes that potentially induce CC issues.

Existing approaches to repairingAndroid compatibility issues [38–
40, 47, 62] are driven by examples of how other app developers
fix compatibility issues. Such examples are either distilled manu-
ally [62] or mined from the large-scale Android app code base [38–
40, 47]. However, these approaches focus on repairing issues in-
duced by evolved Android APIs. It is non-trivial to adapt them
to repair CC issues in the hierarchical-structured XML files with
attribute configurations in XML elements.

In this paper, we aim at proposing an automatic approach called
ConfFix to repair CC issues in Android apps. ConfFix focuses on
repairing the CC issues in resource XML files that are mainly used
for controlling the UI display. This is based on the observation
that these are the majority of issues in the empirical dataset of
real CC issues (See Section 3). Our study is based on popular open-
source Android apps and reveals that developers commonly fix
CC issues by modifying the attribute configuration for each issue-
inducing XML element (See Section 3). However, deriving such
a patch automatically is challenging due to the search space of
possible candidates contributed by the number of attributes and the
attribute value ranges. Take API level 33 for illustration. It supports
1,476 attributes, which can assume a value of strings, integers, or
floating points. The search space is even larger if the repair needs
to accommodate those patches that require changes in multiple
attributes. A practical approach should be able to provide guidance
in exploring such a large search space. Among existing visual-based
issue repair approaches [32, 33, 44, 51–53, 59], XFix [51] is the state-
of-the-art, and repairs cross-browser incompatibilities based on
a predefined set of visual features, such as the layout size and
positions rendered by XML elements. However, XFix is incapable
of handling any issues of which inconsistent visual features are not
predefined.

To tackle the above challenge, ConfFix is driven by the knowl-
edge learned from the attribute processing logic of the Android
framework among various API levels. Indeed, the Android frame-
work supports a rich set of visual features to be configured using dif-
ferent XML attributes. For each issue, ConfFix first diagnoses why
Android framework inconsistently processes the issue-inducing
XML element across API levels. ConfFix then iteratively adjusts at-
tribute configurations of issue-inducing XML elements to eliminate
such inconsistent processing in the Android framework. By do-
ing this, ConfFix outperforms XFix without modeling every visual
feature manifested by CC issues.

We evaluated ConfFix on 77 reproducible CC issues from 13 open-
source Android apps. The results show that ConfFix successfully
repaired 64 issues with a high precision. To evaluate the usefulness
of ConfFix, we also submitted the generated patches of previously-
unknown CC issues that were successfully repaired. Encouragingly,
38 patches have been confirmed and merged.

In summary, we make the following contributions:
• To the best of our knowledge, we are the first to empirically in-
vestigate real-world developers’ practices in repairing CC issues.
• We propose and implement the first automatic approach ConfFix
to repair CC issues in Android apps.
• We evaluated ConfFix on 77 reproducible CC issues. The re-
sults show that ConfFix significantly outperforms baselines in
terms of the number of issues successfully repaired and its preci-
sion. The research artifact can be found in https://github.com/
rudmannn/ConfFix

2 BACKGROUND & MOTIVATIONS
2.1 Configuration Compatibility Issues
XML configuration files play a key role in Android apps. There are
two major types of XML configuration files in Android apps: (1)
resource XML files (located in the /res/ folder) that define apps’

https://github.com/rudmannn/ConfFix
https://github.com/rudmannn/ConfFix
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public class TextView extends View {
public TextView(…) {
final TypedArray a = context.obtainStyledAttributes(R.styleable.TextView);
mSpacingAdd = a.getDimensionPixelSize(

R.styleable.TextView_lineSpacingExtra, …);

lineHeight = a.getDimensionPixelSize(R.styleable.TextView_lineHeight, -1);

setLineHeight(lineHeight);
}
public void setLineHeight(int lineHeight) {
final int fontHeight = getPaint().getFontMetricsInt(null);

setLineSpacing(lineHeight - fontHeight, …);
}
public void setLineSpacing(float add, …) {
mSpacingAdd = add;

}
private float mSpacingAdd;

int mCursorDrawableRes;
private Layout mHintLayout;

}

①

②
③

① ② ③Parsing Loading UsageAPI level ≥ 28

android:lineSpacingExtra is specified as 4sp to assign mSpacingAdd as 4.0 

Figure 3: The code snippet of the Android framework on
handling attributes in TextView.

user interfaces, and (2) the manifest file (AndroidManifest.xml)
that are located in the root directory of the app project for defining
an app’s essential runtime information, such as the app’s name,
hardware features, and permissions. In Android apps, XML ele-
ments are the basic constructs within an XML configuration file
(e.g., Line 1-6 of Figure 1). An XML element may contain attributes
(e.g., android:lineHeight), which are defined as name-value pairs
to provide information related to a specific element. The Android
framework accepts attribute values in various data types, such
as the dimension data type (4sp in Figure 1) to control the size of
UI components. The Android framework supports configurations
specified in thousands of attributes embedded in different types
of XML elements. The processing of these XML elements and at-
tributes is subject to change as the Android framework evolves,
resulting in CC issues. XML elements in a configuration file are
generally processed by the Android framework in three steps.

Parsing. Each XML element is parsed by XmlPullParser, re-
sulting in an AttributeSet or TypedArray object that stores the
attribute values in key-value pairs. The parsing process can be in-
voked using specific APIs in the Android framework. For example,
in Line 3 of Figure 3, the API obtainStyledAttributes is invoked
to parse the XML element in Figure 1.

Loading. The parsed attribute values can then be loaded using
the configuration APIs to set the fields of UI objects. As an example,
getDimensionPixelSize in Line 4 of Figure 3 is a configuration
API for loading the attribute value of android:lineSpacingExtra.
Configuration APIs are often used for assigning the parsed attribute
values to the fields of UI objects at their constructors. For example,
in Line 4 of Figure 3, the value of android:lineSpacingExtra
is loaded and assigned to the field mSpacingAdd by the Android
framework to create a TextView object.

Usage. The loaded attribute values are then processed to render
UI objects’ behavior at runtime. For example, the value of mSpacin-
gAdd will flow into the API setLineSpacing to adjust the line
spacing in the text view.

CC issues can arise if there are changes in the implementation
of these three steps across API levels. As shown in Figure 3, the

Table 1: Issue patches generated by ConfFix and baselines

Method Generated Patches
Lint [20] -

XFix [51] android:height="41sp" (Overfitting)
android:lineSpacingExtra="1sp"

ConfFix android:lineSpacingExtra="1sp"
app:lineHeight="20sp"

Android framework started to process android:lineHeight since
API level 28. Inconsistent line heights occur when applying an-
droid:lineHeight at lower API levels.

2.2 Motivating Example
We applied two state-of-the-art techniques, Lint [20] and XFix [51],
to the issue-inducing XML element in Figure 1 to illustrate the
need for better automatic repair of CC issues. Lint [20] is a popular
static checker released by Google. It integrates rule-based checkers
that can suggest fixes when CC issues are detected. XFix [51] is a
search-based technique that repairs cross-browser incompatibilities
by modifying the CSS properties of HTML elements. The search
process of XFix is guided by comparing the size and positions of the
bounding boxes of the UI elements in the DOM tree. Although XFix
was not originally designed to repair CC issues in Android apps,
we adapted XFix by applying attributes documented in TextView
to fix the issue in Figure 1. We ran XFix five times to accommodate
the randomness during the search for the issue fixes. Note that we
do not make a comparison with existing approaches on Android
compatibility issue repair [38–40, 47, 62] since they repair the com-
patibility issues arising from the program code rather than the XML
configuration of an app.

Table 1 shows the comparison results. Specifically, Lint cannot
provide any issue-fixing suggestions because it fails to match any
rules that can fix issues induced by android:lineHeight. XFix
can generate a patch via android:lineSpacingExtra, the same
as used in the patch made by developers. However, as the devel-
opers found, setting android:lineSpacingExtra to 4sp does not
achieve the same line height as android:lineHeight="20sp" at
a higher API level. In contrast, the patch of XFix not only main-
tains the same line height as android:lineHeight, but also re-
moves inconsistencies between API levels. Although XFix can
generate a far better patch in two runs, XFix causes overfitting
patches in another three runs. The reason is that the fitness func-
tion adopted by XFix does not appropriately interpret the semantic
of android:lineHeight by considering only the layout bounds
rendered in a DOM tree. As such, android:height is suggested as
a repair candidate to achieve consistent layout bounds across API
levels.

Our proposed approach, ConfFix, overcomes these limitations by
consistently generating the correct patches among five runs. Besides
android:lineSpacingExtra, ConfFix generates another patch by
using app:lineHeight, which is located in the AndroidX library
that Android officially releases for resolving incompatibilities. The
rationale of ConfFix is to monitor how the attributes are handled in
the Android framework. Specifically, ConfFix aims to eliminate in-
consistent field values induced by issue-inducing attributes among
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API levels. Figure 3 shows the code changes that induce CC issues in
Figure 1. In Line 5, the configuration API getDimensionPixelSize
is invoked to load android:lineHeight, whose attribute value will
be stored in the variable lineHeight as 20.0. Such a variable is
further processed by the Android framework to adjust the extra
space after each line (mSpacingAdd=4.0 in Line 13) while consider-
ing the text view’s font height (fontHeight=16.0 in Line 9). Since
android:lineHeight was introduced at API level 28, it cannot be
used to assign a value to mSpacingAdd at low API levels, causing
the CC issue shown in Figure 1. Therefore, the app developers spec-
ified android:lineSpacingExtra, which was introduced at API
level 1, as 1sp to make the assignment of mSpacingAdd the same as
when using android:lineHeight. The attribute app:lineHeight
also follows the above principle to fix the issue.

The above example demonstrates how ConfFix performs issue
repair by diagnosing the inconsistent text view’s line height as a
result of the field mSpacingAdd in the Android framework. Given
the large search space of patches, ConfFix is guided to search for
issue-fixing attributes (e.g., android:lineSpacingExtra) that can
dynamically affect mSpacingAdd. ConfFix further adjusts the issue-
fixing attribute values to assign consistent values to fields across
API levels. Such a design fills the gap of XFix, which fails to model
visual features relevant to CC issues (e.g., text view’s line height).

We need to tackle the following technical challenges to achieve
the above research goals. First, how to precisely diagnose the fields
related to CC issues in the Android framework. Second, how to
generate patches to eliminate such inconsistent field values induced
by CC issues. To further provide insights into the design of ConfFix,
we conducted an empirical study on the common strategies of app
developers for repairing CC issues.

3 PATCHING STRATEGIES OF DEVELOPERS
To empirically study common patching strategies for CC issues, we
refer to the state-of-the-art dataset released by Huang et al. [43]
in November 2021, which contains code revisions of 196 CC is-
sues from 43 open-source Android apps. Specifically, 190 issues
(190/196=96.9%) are related to the resource XML elements used
to control apps’ UI display (See Section 2). The above finding mo-
tivates us to design an approach to fix CC issues in resource
XML elements. We discarded six CC issues located in the manifest
files (i.e., AndroidManifest.xml).

We performed the data analysis as follows. We first randomly
sampled 95 issues (50%) from the empirical dataset. For each issue,
two authors with two years of experience in Android app develop-
ment independently analyzed the code revisions and related issue
reports to identify code snippets related to patches. A pilot taxon-
omy was constructed by gathering the results of two authors and
resolving conflicts during meetings. Then, the two authors itera-
tively labeled the remaining 95 issues and held discussions about
adjusting the pilot taxonomy and resolving conflicts. The final re-
sults were obtained once the two authors reached a consensus on
the taxonomy and the labels of the empirical dataset.

We successfully tracked patches for 150 CC issues. The app de-
veloper only flagged the presence of the remaining 40 CC issues
in their code revisions without tackling the resulting inconsistent
runtime behavior across API levels (e.g., supporting new features

drawable/divider_light.xml
<shape xmlns:android="http://schemas.android.com/apk/res/android">

<solid android:color="?attr/list_separator_color" />
<solid android:color="@color/list_separator_light" />

</shape>

<shape xmlns:android="http://schemas.android.com/apk/res/android">
<solid android:color="?attr/list_separator_color" />
<solid android:color="@color/list_separator_dark" />

</shape>

01
02 -
03 +
04 

05
06 -
07 +
08

09

10

11 + ResourceUtil.getThemedAttributeId(getContext(),
R.attr.list_separator_drawable), true));

drawable/divider_dark.xml

styles-dark.xml
<item name="list_separator_drawable">@drawable/divider_dark</item>

styles-light.xml
<item name="list_separator_drawable">@drawable/divider_light</item>

ListCardView.java

Figure 4: The patch in apps-android-wikipedia 4738471 [7]

introduced at higher API levels). The patches for these 40 issues can-
not be tracked from the related issue reports. Overall, most issues
were fixed at the granularity of attributes (101/150=67.3%), meaning
that developers fixed issues by changing the attribute configura-
tions of the issue-inducing XML elements. The other issues were
fixed at the granularity of XML elements (49/150=32.7%), meaning
that developers found alternatives to replace the issue-inducing
XML elements. Note that it is possible for app developers to com-
bine different patching strategies to fix a CC issue. For example, the
issue in Figure 4 was fixed by combining the T2 and T3 strategies as
illustrated below. We found five such cases in our empirical dataset.

3.1 Patches at the Attribute Granularity
We found 101 issues whose patches are at the attribute granularity.
Four fixing strategies, referred to as T1–4 below, were found for
these 101 issues.

T1: Specifying Issue-Fixing Attributes. We observed 55 is-
sues were fixed by specifying issue-fixing attributes in the issue-
inducing XML elements to eliminate the inconsistent runtime be-
havior. For example, to fix the issue in Figure 1, the issue-fixing
attribute android:lineSpacingExtra was specified to adjust the
text view’ line height for android:lineHeight, which is not avail-
able at API levels < 28.

T2: Changing Values of Issue-InducingAttributes. Twenty-
six issues were fixed by directly changing the values of issue-
inducing attributes. This usually happened when the issues were
caused by attribute data type changes between different API levels.
As shown in Figure 4, project apps-android-wikipedia’s commit
4738471 [7] files such an issue, which is induced by android:color
not accepting the style data type (i.e., list_separator_color)
at API levels < 21. To resolve this issue, developers separated
list_separator_color as two different color data type values
(Line 3 and 7 of Figure 4).

T3: Invoking APIs in App Code.We observed 20 issues that
were fixed by invoking APIs in the app code to simulate the runtime
behavior of issue-inducing attributes. As Figure 4 shows, the app
developers invoked the issue-fixing API getThemedAttributeId
to enable the separated color data type values for different styles at
lower API levels.
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<adaptive-icon
<background android:drawable="@color/primary"/>
<foreground android:drawable="@mipmap/icon_foreground"/>

</adaptive-icon>
<adaptive-icon> not available for API level < 26

mipmap-anydpi-v26/icon_round.xml mipmap-hdpi/icon_round.png

Figure 5: The patch in AdAway 576720b [1].

<ripple android:color="@color/safr">
<item android:drawable="@android:color/white"/>

</ripple>

<ripple> not available for API level < 23

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_pressed="true" 

android:drawable="@color/safr_pressed" />
<item android:drawable="@android:color/white" />

</selector>

01 -
02 -
03 -

04 +
05 +
06 +

07 +

Figure 6: The patch in AmazeFileManager b3b8d60 [4].

T4: Directly Removing Issue-Inducing Attributes. We ob-
served five cases where app developers directly removed issue-
inducing attributes. For example, apps-android-wikipedia’s com-
mit 53010ec [8] files an issue due to android:drawableLeft co-
exists with android:drawableStart at API levels < 23. The is-
sue was fixed by simply removing the redundant attribute an-
droid:drawableLeft.

3.2 Patches at the XML Element Granularity
The remaining 49 issues were fixed by using alternatives to replace
the issue-inducing XML elements. This usually happens when such
issue-inducing XML elements are not available at low API levels.
We found two common strategies, referred to as T5 and T6 below.

T5: Specifying Non-XMLResource Files.We found 38 issues
fixed by specifying non-XML resource files that achieve the same
visual appearance as issue-inducing XML elements. As shown in
Figure 5, AdAway’s commit 576720b [1] files an issue induced by
using <adaptive-icon> to specify the app’s desktop icon. Such an
<adaptive-icon> tag is not available for API levels < 26. Therefore,
the app developers introduced a set of PNG files that manifest the
same visual appearance as configured by <adaptive-icon>.

T6: Specifying Different Types of XML Elements. Another
11 issues were fixed by specifying different types of XML elements.
As shown in Figure 6, AmazeFileManager commit b3b8d60 [4] files
an issue induced by <ripple> not available at API levels < 23. The
app developers fixed this by the XML elements with the <selector>
tag instead, to manifest the ripple effect at lower API levels.

4 CONFFIX APPROACH
We propose ConfFix as a guided search-based approach to repair
CC issues in Android apps. As illustrated in Section 3, ConfFix fo-
cuses on repairing CC issues in resource XML files, which are often
configured to render the UI display of Android apps. ConfFix edits
the attribute configurations of issue-inducing XML elements by ei-
ther finding appropriate issue-fixing attributes and attribute
values (T1, T2 in Section 3) or removing the issue-inducing at-
tributes (T4 in Section 3) for the issue-inducing XML element.

Such patching strategies account for 57.3% (80/150) in our empir-
ical dataset. ConfFix does not support T3, considering the small
proportion (20/101) and the challenge, which requires determining
(1) where to edit the app code, (2) which APIs to select, and (3)
how to apply context information for valid API calls. We leave the
adoption of T5 and T6 as future works since they are at the XML
element granularity and thus require different strategies compared
to the patches at the attribute granularity. Specifically, applying
T5 requires image files for issue-inducing elements. Applying T6
requires issue-fixing XML elements, which is more challenging
considering the larger search space of multiple XML elements orga-
nized in a hierarchical structure. Existing approaches are ineffective
in modeling possible Android visual features that can be manifested
by CC issues. The basic idea of ConfFix is to first diagnose how
the inconsistent handling of issue-inducing attributes across API
levels can affect the apps’ UI display, and then search for a patch to
eliminate such inconsistencies. As described in Section 2, the han-
dling of XML attributes in the Android framework involves a set of
fields that are critical for rendering the apps’ UI (e.g., mSpacingAdd
in Figure 3 for handling android:lineHeight). ConfFix generates
patches to eliminate the differences in these field values across
different API levels while preserving the semantics as expected by
app developers. As the example in Section 2 shows, the patches
produced by ConfFix not only eliminate the inconsistencies in the
field mSpacingAdd between API levels 27 and 28 but also preserve
the 20sp line height as expected by app developers.

ConfFix works as follows. Given a subject app 𝑎𝑝𝑝𝑖 , a CC issue
𝑖 , and the UI test script 𝑈 that can reproduce 𝑖 , ConfFix outputs
a patched app 𝑎𝑝𝑝𝑝 . Formally, a CC issue 𝑖 is defined as a tuple
⟨𝑒𝑖 , 𝐴𝑖 , 𝑙𝑖 ⟩, where 𝐴𝑖 is a set of issue-inducing attributes located in
the issue-inducing XML element 𝑒𝑖 . Whereas, 𝑙𝑖 is the API level
where inconsistent UI rendering is induced by comparing 𝐴𝑖 to the
target API level 𝑙𝑡 . ConfFix performs issue repair in two stages. In
the first stage, after replaying the UI test script𝑈 in 𝑎𝑝𝑝𝑖 , ConfFix
performs issue diagnosis by identifying a set of fields 𝐹 that are
affected by 𝐴𝑖 and have inconsistent values between API levels 𝑙𝑖
and 𝑙𝑡 . For ease of presentation, we refer to the fields in 𝐹 as key
fields. Such a set of key fields 𝐹 is leveraged to calculate the fitness
score that quantifies how well the patches generated by ConfFix
preserve the semantics as 𝑎𝑝𝑝𝑖 at API level 𝑙𝑡 . In the second stage,
ConfFix generates patches by editing the attribute configuration
of issue-inducing XML elements to adjust the values of 𝐹 at API
level 𝑙𝑡 . ConfFix outputs 𝑎𝑝𝑝𝑝 that reaches the maximum fitness
score without inconsistent values in 𝐹 between API levels 𝑙𝑖 and 𝑙𝑡 .

4.1 Issue Diagnosis
In this step, ConfFix diagnoses the root causes of the issues in 𝑒𝑖 after
replaying the UI test script𝑈 in 𝑎𝑝𝑝𝑖 . Essentially, ConfFix identifies
the set of key fields 𝐹 that hold inconsistent values between the
two API levels due to the issue-inducing attributes𝐴𝑖 . As discussed
in Section 2, the key fields in 𝐹 are located in the objects𝑂𝑖 created
due to the processing of 𝑒𝑖 . The TextView instance in Figure 3 is
an example of 𝑂𝑖 created from the XML element in Figure 1. We
refer to the objects in 𝑂𝑖 as key objects for ease of presentation.
The diagnosis process involves two steps: (1) identifying the key
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objects 𝑂𝑖 of 𝑒𝑖 , and (2) identifying the key fields 𝐹 for each object
in 𝑂𝑖 .

4.1.1 Key Object Identification. In this step, ConfFix identifies a
set of key objects 𝑂𝑖 created due to the processing of 𝑒𝑖 . Specifi-
cally, ConfFix leverages the mechanism documented in the Android
Developers [9] and identifies key objects for two main cases.

The key objects𝑂𝑖 can be accessed through resource IDs, which
are unique resource names for XML elements. Specifically, ConfFix
inserts code snippets into the app source code to identify key ob-
jects. First, ConfFix finds the activities or fragments that renders
𝑒𝑖 . ConfFix inserts findViewById(id) with the resource id as the
parameter into the callbacks responsible for rendering views (e.g.,
onCreate in Activity, onViewCreated in Fragment). The return val-
ues of inserted findViewById(id) are identified as 𝑂𝑖 . If 𝑒𝑖 is an
element whose key objects cannot be identified from the previous
step, ConfFix tracks the API invocations that take the resource ID
of 𝑒𝑖 as a parameter and return the resource object in the app code.
ConfFix identifies the objects returned from these API invocations
to 𝑂𝑖 as they can be potentially related to 𝑒𝑖 .

Although we cannot draw a whole picture of how to identify ob-
jects created from XML elements, adopting the above two strategies
does not significantly impact the CC issue repair. In our evaluation,
we found that ConfFix failed to identify key objects for two out of
77 CC issues.

4.1.2 Key Field Identification. After identifying key objects 𝑂𝑖 ,
ConfFix continues to identify a set of key fields 𝐹 holding inconsis-
tent values between the two API levels due to the issue-inducing
attributes 𝐴𝑖 . ConfFix will further compare the values of such key
fields 𝐹 as the fitness score for patch generation.

However, identifying such key fields requires comparing field
values to check whether there are any inconsistencies. Such a task
is non-trivial as classes in the Android framework may contain a set
of non-primitive fields. Many non-primitive fields in the Android
framework are incomparable. For example, the field mHintLayout
in Line 17 of Figure 3 is an instance of the Layout class, which is
incomparable without overriding the equals or compareTo APIs.
We found that among the 13,504 classes in the Android framework
at API level 33, only 768 classes override the equals API, and 17
classes override the compareTo API.

ConfFix facilitates the comparison of non-primitive fields by
measuring the differences of a set of primitive fields accessible
from 𝑂𝑖 . We follow the definition of Tripp et al. [55] to model field
accesses as access paths. An access path of the key object 𝑜𝑖 ∈ 𝑂𝑖

is represented in the form of 𝑜𝑖 .𝑔.ℎ.𝑓𝑝 , where 𝑓𝑝 is the primitive
field that is reachable by 𝑜𝑖 , and 𝑔 and ℎ are intermediate fields
in non-primitive types for 𝑜𝑖 to reach 𝑓𝑝 . We define the length of
access path as the number of fields involved from 𝑜𝑖 to reach 𝑓𝑝 (e.g.,
length 3 for 𝑜𝑖 .𝑔.ℎ.𝑓𝑝 ). ConfFix collects access paths up to a length 𝑘 ,
otherwise the number of collected access paths becomes infeasible
large [34]. Note that there is no general value of 𝑘 available to fit
all cases. For example, 𝑘 = 1 is appropriate for the issue in Figure 1
to observe the inconsistencies in mSpacingAdd between API levels
27 and 28. ConfFix dynamically adjusts 𝑘 for each individual case.

Algorithm 1 shows how ConfFix identifies key fields 𝐹 from
𝑜𝑖 ∈ 𝑂𝑖 . In particular, ConfFix generates a length-𝑘 access path

Algorithm 1: Key Field Identification
Input: 𝑂𝑖 : The key objects created from 𝑒𝑖
Output: 𝐹 : The set of access paths collected from 𝑒

1 foreach 𝑘 ← 1 𝑡𝑜 𝑘𝑚𝑎𝑥 do
2 𝐴𝑃 ← 𝑎𝑐𝑐𝑒𝑠𝑠𝑃𝑎𝑡ℎ𝑠𝑂 𝑓 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝐹𝑖𝑒𝑙𝑑𝑠 (𝑘,𝑂𝑖 )
3 𝐹 ← 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝐹𝑖𝑒𝑙𝑑𝑉𝑎𝑙𝑢𝑒𝑠 (𝐴𝑃, 𝑙𝑖 , 𝑙𝑡 )
4 if 𝑙𝑒𝑛(𝐹 ) > 0 then
5 return 𝐹

𝑜𝑖 .𝑓1 . · · · .𝑓𝑘−1 .𝑓𝑘 by expanding the field 𝑓𝑘 located in the non-
primitive field 𝑓𝑘−1 (Line 2). ConfFix then identifies key fields 𝐹
whose values are affected by 𝐴𝑖 and demonstrate inconsistencies
between API levels 𝑙𝑖 and 𝑙𝑡 (Line 3). Specifically, ConfFix generates
𝑎𝑝𝑝 ′

𝑖
by removing𝐴𝑖 from 𝑒𝑖 , and then considers a field 𝑓 is affected

by 𝐴𝑖 if its values are inconsistent between 𝑎𝑝𝑝𝑖 and 𝑎𝑝𝑝 ′𝑖 at API
level 𝑙𝑡 . The value of 𝑘 increases when ConfFix fails to identify valid
key fields at the current 𝑘 value. The algorithm terminates when
no key fields are extracted and 𝑘 reaches the maximum number
𝑘𝑚𝑎𝑥 (set to 5 by default). The above process ignores key fields
whose lengths are greater than 𝑘 while being able to guarantee the
performance of ConfFix. In our experiments on 77 real CC issues,
we did not observe ConfFix failing or generating overfitting patches
for this reason.

4.2 Fitness Score Calculation
Given a plausible patch 𝑎𝑝𝑝𝑝𝑙𝑠 (the patch that passes𝑈 and shows
consistent values of 𝐹 between 𝑙𝑖 and 𝑙𝑡 ), the fitness score 𝑆𝑐𝑜𝑟𝑒 is
calculated to measure how close the values of 𝐹 in 𝑎𝑝𝑝𝑝𝑙𝑠 are to
𝑎𝑝𝑝𝑖 at 𝑙𝑡 , as shown in Equation 1.

𝑆𝑐𝑜𝑟𝑒 (𝑎𝑝𝑝𝑝𝑙𝑠 ) = 1 −
𝐹𝐷𝑖 𝑓 𝑓 (𝑎𝑝𝑝𝑝𝑙𝑠 , 𝑎𝑝𝑝𝑖 )
𝐹𝐷𝑖 𝑓 𝑓 (𝑎𝑝𝑝 ′

𝑖
, 𝑎𝑝𝑝𝑖 )

(1)

where the function 𝐹𝐷𝑖 𝑓 𝑓 (𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) measures the differences in
the values of 𝐹 between two apps 𝑎𝑝𝑝 and 𝑎𝑝𝑝 ′ at API level 𝑙𝑡 .
Intuitively, 𝑆𝑐𝑜𝑟𝑒 measures how well 𝑎𝑝𝑝𝑝𝑙𝑠 can eliminate the dif-
ferences in the values of 𝐹 at API level 𝑙𝑡 before and after removing
the issue-inducing attributes 𝐴𝑖 in 𝑒𝑖 . ConfFix calculates 𝑆𝑐𝑜𝑟𝑒 for
𝑎𝑝𝑝𝑝𝑙𝑠 after replaying 𝑈 . Initially, 𝑆𝑐𝑜𝑟𝑒 = 0, since no differences
in key field values are eliminated. ConfFix outputs a patched app
𝑎𝑝𝑝𝑝 with the maximal 𝑆𝑐𝑜𝑟𝑒 value.

𝐹𝐷𝑖 𝑓 𝑓 (𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) is calculated as the sum of Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′),
which measures the differences in terms of the value of each 𝑓 ∈ 𝐹
between 𝑎𝑝𝑝 and 𝑎𝑝𝑝 ′ at API level 𝑙𝑡 , as shown below.

𝐹𝐷𝑖 𝑓 𝑓 (𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) =
∑
𝑓 ∈𝐹

Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) (2)

However, there is no generic way to calculate Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′), as
many primitive fields in the Android framework are numerically in-
comparable. The field mCursorDrawableRes in Line 16 of Figure 2
is such an example of the text cursor’s resource ID being stored.
On the other hand, simply checking all the key fields for equality
via Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) fails to capture the subtle changes made during



ConfFix: Repairing Configuration Compatibility Issues in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

the patch generation process. As illustrated in Section 2, the nu-
merical differences of mSpacingAdd are helpful to search appropri-
ate values for android:lineSpacingExtra and app:lineHeight.
Identifying numerically comparable fields is non-trivial without
explicit labels provided in the Android framework.

We make the following design choice. For an 𝐴𝑖 that contains
𝑎𝑖 in the numeric data type (i.e., 𝑎𝑖 in integer, float, dimension and
fraction data types, as documented in Android Developers [6]), the
numerical differences in the key fields are essential in the search for
an appropriate numerical attribute value for 𝑎𝑖 . In this case, ConfFix
calculates Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) for 𝑓 ∈ 𝐹 in the numeric primitive data
type as shown in Equation 3.

Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) = |𝑣 (𝑓 , 𝑎𝑝𝑝) − 𝑣 (𝑓 , 𝑎𝑝𝑝 ′) | (3)

where 𝑣 (𝑓 , 𝑎𝑝𝑝) and 𝑣 (𝑓 , 𝑎𝑝𝑝 ′) are the values of 𝑓 in 𝑎𝑝𝑝 and 𝑎𝑝𝑝 ′
at API level 𝑙𝑡 . For the other cases, ConfFix simply checks the
equality of 𝑓 , as Equation 4 shows.

Δ(𝑓 , 𝑎𝑝𝑝, 𝑎𝑝𝑝 ′) =
{
1, 𝑣 (𝑓 , 𝑎𝑝𝑝) ≠ 𝑣 (𝑓 , 𝑎𝑝𝑝 ′)
0, 𝑣 (𝑓 , 𝑎𝑝𝑝) = 𝑣 (𝑓 , 𝑎𝑝𝑝 ′)

(4)

It shows threats that ConfFix may fail or generate overfitting
patches by comparing numerical differences for those incomparable
primitive fields (e.g., mCursorDrawableRes). However, we have not
witnessed such cases in our evaluation of 77 real-world CC issues.

4.3 Patch Generation
Guided by the fitness score, ConfFix generates patches by editing
the attribute configuration of 𝑒𝑖 . Specifically, ConfFix first identifies
candidate issue-fixing attributes 𝐴𝑓 from the Android framework.
Then, ConfFix seeks a set of candidate patches 𝐴𝑃𝑃𝑐𝑎𝑛𝑑 by search-
ing for an attribute value that achieves an optimal fitness score for
each 𝑎𝑓 ∈ 𝐴𝑓 . Finally, ConfFix seeks the best combination𝐴𝑃𝑃∗

𝑐𝑜𝑚𝑏
of candidate patches in 𝐴𝑃𝑃𝑐𝑎𝑛𝑑 to facilitate issue repair via mul-
tiple attributes. The patched app 𝑎𝑝𝑝𝑝 is generated by applying
𝐴𝑃𝑃∗

𝑐𝑜𝑚𝑏
to 𝑒𝑖 .

4.3.1 Search for Issue-Fixing Attributes. In this step, ConfFix iden-
tifies a set of candidate issue-fixing attributes 𝐴𝑓 in the Android
framework. The above task is non-trivial considering the large
number of public attributes in the Android framework (1,476 at API
level 33). Based on the empirical findings of developers’ practices
in choosing issue-fixing attributes (83 issue-fixing attributes in 55
T1 issues), ConfFix identifies 𝐴𝑓 as follows.

• In the Android framework class 𝑐𝑙𝑠𝑖 that processes 𝑒𝑖 at API level
𝑙𝑖 , ConfFix considers all attributes with the same data types as
candidate issue-fixing attributes, and puts them into 𝐴𝑓 . This
heuristic is based on our finding on the patches of 27 T1 issues.
• ConfFix further searches for candidate issue-fixing attributes
from the AndroidX library. Specifically, ConfFix first searches
for the attributes in the AndroidX library with the same name as
𝑎𝑖 as 𝐴𝑓 . If the above step fails, ConfFix searches the AndroidX
library for a class that extends from 𝑐𝑙𝑠𝑖 , and adds all attributes
that are used in this class and with the same data type as 𝑎𝑖 to
𝐴𝑓 . This heuristic is based on our findings on the patches of 11
T1 issues.

Table 2: The process of ConfFix in generating a candidate
patch by android:lineSpacingExtra for the issue in Figure
1.

Run 1 2 3 4
Attr. Value 20sp 16sp 0sp 1sp
𝑆𝑐𝑜𝑟𝑒 < 0.0 < 0.0 0.0 1.0

• If ConfFix does not find 𝐴𝑓 from the above steps, it considers
all attributes in 𝑐𝑙𝑠𝑖 as candidate issue-fixing attributes, and puts
them to 𝐴𝑓 .
By doing so, the search space for issue-fixing attributes is signifi-

cantly reduced without trying all possible attributes in the Android
framework. In our evaluation of 77 real CC issues, ConfFix can
successfully fix 64 of them by adopting the above strategies.

4.3.2 Search for Candidate Patches. For each candidate issue-fixing
attribute 𝑎𝑓 ∈ 𝐴𝑓 , ConfFix generates 𝑎𝑝𝑝𝑐𝑎𝑛𝑑 (𝑎𝑓 ) by searching for
an attribute value that maximizes 𝑆𝑐𝑜𝑟𝑒 . Specifically, for 𝑎𝑓 that is
numerically incomparable (e.g., android:color), ConfFix iterates
all attribute values with the same data type in 𝑒𝑖 and selects the one
with the highest 𝑆𝑐𝑜𝑟𝑒 . For 𝑎𝑓 that are numerically comparable (e.g.,
android:lineSpacingExtra), ConfFix searches for the attribute
value inspired by Mahajan et al [51]. Specifically, ConfFix first
selects the attribute value in 𝑒𝑖 that has the same data type and
reaches the highest 𝑆𝑐𝑜𝑟𝑒 value as the starting point for adjustment.
ConfFix uses the default value of 𝑎𝑓 as the starting point if there is
no improvement 𝑆𝑐𝑜𝑟𝑒 in the previous step (i.e., 𝑆𝑐𝑜𝑟𝑒 < 0). ConfFix
then adds a random delta value to a small value range (i.e., (0, 𝑑])
of its attribute value from the starting point. Initially, 𝑑 is set to 1.
ConfFix expands𝑑 exponentially if 𝑆𝑐𝑜𝑟𝑒 is improved. If 𝑆𝑐𝑜𝑟𝑒 is not
improved, ConfFix switches to the opposite direction (i.e., [−𝑑, 0)
value range) from the current value and resets 𝑑 as 1. A candidate
patch is generated if there is no fitness score improvement in any
of the exploratory directions (i.e., local optima).

Table 2 shows how ConfFix generated a candidate patch for the
issue in Figure 1 by modifying android:lineSpacingExtra. To
search for an appropriate starting point, ConfFix first explored the
dimensional attribute values specified in 𝑒𝑖 (i.e., 20sp and 16sp)
and obtained negative 𝑆𝑐𝑜𝑟𝑒 values (Runs 1 and 2). ConfFix then
selected 0sp, the default value of android:lineSpacingExtra, as
the starting point and incrementally updated the attribute value
(Run 3). The exploration terminated when the attribute value was
1sp with 1.0 fitness score (Run 4).

4.3.3 Search for Candidate Patch Combination. ConfFix seeks the
best combination of candidate patches 𝐴𝑃𝑃∗

𝑐𝑜𝑚𝑏
. This process is

included as a patch involving one issue-fixing attribute may only
partially resolve a CC issue and should be combined with other
issue-fixing attributes. We found that 26 CC issues in our empirical
study dataset were fixed by multiple issue-fixing attributes. Inspired
by the process proposed byMahajan et al. [51], ConfFix searches for
𝐴𝑃𝑃∗

𝑐𝑜𝑚𝑏
in a biased random fashion according to the fitness score

of each candidate patch 𝑎𝑝𝑝𝑐𝑎𝑛𝑑 ∈ 𝐴𝑃𝑃𝑐𝑎𝑛𝑑 . Specifically, 𝑎𝑝𝑝𝑐𝑎𝑛𝑑
is added to a combination 𝐴𝑃𝑃𝑐𝑜𝑚𝑏 with the probability as follows:

𝑃 (𝑎𝑝𝑝𝑐𝑎𝑛𝑑 ) =
𝑆𝑐𝑜𝑟𝑒 (𝑎𝑝𝑝𝑐𝑎𝑛𝑑 )

𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 (𝐴𝑃𝑃𝑐𝑎𝑛𝑑 )
(5)
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where 𝑆𝑐𝑜𝑟𝑒 (𝑎𝑝𝑝𝑐𝑎𝑛𝑑 ) represents the fitness score of 𝑎𝑝𝑝𝑐𝑎𝑛𝑑 , and
𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑥 (𝐴𝑃𝑃𝑐𝑎𝑛𝑑 ) represents the maximum fitness score of the
candidate patches in 𝐴𝑃𝑃𝑐𝑎𝑛𝑑 . ConfFix applies 𝐴𝑃𝑃𝑐𝑜𝑚𝑏 to 𝑒𝑖 and
computes 𝑆𝑐𝑜𝑟𝑒 (𝐴𝑃𝑃𝑐𝑜𝑚𝑏 ) following the process in Section 4.2.
ConfFix preserves the candidate patch combination 𝐴𝑃𝑃∗

𝑐𝑜𝑚𝑏
with

the highest fitness score. A patched app 𝐴𝑃𝑃𝑝 is generated by
applying 𝐴𝑃𝑃∗

𝑐𝑜𝑚𝑏
to 𝑒𝑖 .

The algorithm terminates when (1) 𝑆𝑐𝑜𝑟𝑒 = 1.0 (i.e., achieving
consistent values in 𝐹 as 𝑎𝑝𝑝𝑖 at API level 𝑙𝑡 ) and no inconsisten-
cies observed in 𝐹 between API levels 𝑙𝑖 and 𝑙𝑡 ; (2) the algorithm
reaches a maximum threshold of candidate patch combinations (20
by default); (3) the algorithm achieves no improvement in fitness
score by generating a sequence of candidate patch combinations (5
by default); or (4) the algorithm exceeds the time budget.

5 EVALUATION
We implemented ConfFix based on UIAutomator2 [30], an open-
source UI testing framework for Android apps. We evaluate ConfFix
by answering the following research questions:
• RQ1: (Effectiveness) How effective is ConfFix in repairing CC
issues in real-world Android apps?
• RQ2: (Comparison)CanConfFix outperform existing approaches
in repairing CC issues?
• RQ3: (Usefulness) Are the patches generated by ConfFix useful
to app developers?

5.1 Evaluation Setup
5.1.1 Issue Dataset Collection. To answer the above RQs, we col-
lected a set of 77 real-world CC issues by the following process.

To measure the quality of patches generated by ConfFix and
baselines, we collected a set of reproducible CC issues that have
been fixed by app developers in the past (i.e., issues with human
patches). We collected issues from Android app projects with rich
project maintenance history. Specifically, we used “android” as the
keyword to search for open-source app projects on GitHub [18].
From the returned projects of more than 1,000 stars, we collected
118 projects that contain APK files in the project release or the
“app” keyword in the project name, as the projects satisfying these
conditions are more likely to be Android apps. We further excluded
the projects meeting any of the following conditions: (1) the project
is not an Android app (e.g., a third-party library); (2) the project con-
tains less than 1,000 code revisions; and (3) the project is included
in the empirical dataset [43]. In total, 38 app projects were selected.
We collected code revisions related to CC issue repair following the
keyword-based search process in [43]. For a balanced collection of
CC issues among app subjects, we kept the latest 200 code revisions
returned by keyword-based searches for each app subject. In total,
3,089 code revisions in 38 app projects were collected. Two authors
performed issue reproduction by (1) screening out code revisions
not related to CC issues as those code revisions can be accidentally
included by our keyword-based search; (2) identifying the buggy
app versions; (3) identifying the issue-inducing attributes and XML
elements from the revision-related commit logs, issue reports, and
code diffs; and (4) building UI test scripts in Android emulators to
manifest inconsistent runtime behavior induced by the CC issues.
A code revision was excluded if (1) we failed to recover the issue

reproduction steps by referring to information disclosed in the app
project (e.g., issue discussions, app user manuals); (2) its manifes-
tation requires special triggering conditions (e.g., interaction with
other accounts); and (3) the issue occurs at API levels < 21 as their
market share is less than 1% [28]. Eventually, we collected 35 issues.

We further expanded the issue dataset with reproducible CC
issues that have not yet been fixed to seek for developers’ feed-
back on the patches generated by ConfFix. From 4,254 apps in
F-Droid [15], we sampled 537 apps that satisfy the following con-
ditions: (1) the app project received 30+ stars on GitHub [18]; and
(2) the last git commit was pushed into the most recent month. We
ran the rules of ConfDroid, the state-of-the-art approach for CC
issue detection, to detect CC issues at API levels ≥ 21 for these 537
Android apps. In total, ConfDroid generated 706 warnings in 110
apps. Due to the cost of the issue reproduction process, we sampled
25% of apps that were recently updated and not included in the
empirical dataset (194 warnings in 27 apps). Two authors repro-
duced the warnings following the process of [43]. Specifically, we
tried to reach the Activity where the XML element is located. By
reading the code of the Activity, we tried to manifest inconsistent
runtime behavior induced by 𝐴𝑖 . Eventually, we collected 42 issues.
The remaining warnings failed because (1) we cannot find clues in
the app code to reach the XML element; (2) the CC issues can only
be triggered under special conditions; and (3) ConfDroid generates
false warnings.

Table 3 shows the statistics of all 77 (35 + 42) CC issues, which
cover 10 distinct issue-inducing attributes. These issues come from
13 Android apps that are diverse (concerning multiple app cate-
gories in Google Play [19]) and popular (with thousands to millions
of downloads in Google Play [19]). Note that the number of CC
issues collected from each app subject varies depending on the
usage of issue-inducing attributes. For example, ConfDroid gen-
erated 105 warnings of android:drawableTint in FairEmail [23].
We successfully reproduced 32 warnings but failed to reach the
remaining XML elements following the above process.

5.1.2 Baselines. We compared ConfFix with the following two
baselines.

• XFix [51], the state-of-the-art tool for repairing cross-browser in-
consistencies. We leveraged XFix’s fitness function, which quan-
tifies the relative layout deviation of UI elements, to fix CC issues.
Note that the original version of XFix generates patches by se-
lecting appropriate CSS properties from a manually-maintained
list. For CC issues, given an issue-inducing XML element 𝑒𝑖 , we
adapted XFix to apply the attributes of 𝑒𝑖 . We kept the other
original behavior because the additional inputs required by XFix
(DOM tree, screen images) are available in the Android emulator.
• Lint [20], a static analyzer integrated in Android Studio [6]. Lint
integrates a set of rules that can generate patches of CC issues.

All the experiments were conducted on a server with 64-core
Intel Xeon CPU E5-2683 v4 @ 2.10GHz processor and 256GB RAM.
We configured the target API level 𝑙𝑡 as API level 33, the latest
Android framework version when we conducted experiments. We
use Android emulators with 4GB RAM, 8GB ROM, and a screen
resolution of 1440x3120 for experiments to avoid inconsistencies
induced by different hardware profiles.
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Table 3: Statistics of 77 CC issues in 13 Android apps.

App Name Category Install Stars #Issue
airmessage [3] Communication 100K+ 120 1
Buran [11] - - 71 1
cwa-app-android [12] Health & Fitness 10M+ 2.5K+ 3
FairEmail [23] Communication 500K+ 1.8K+ 32
fenix [24] Communication 100M+ 6.6K+ 18
LibreTube [21] - - 5.3K+ 1
lichobile [22] Board Games 5M+ 1.8K+ 1
MaterialFiles [31] Tools 100K+ 3.4K+ 1
Music-Player-Go [14] Music & Audio 100K+ 1.4K+ 7
Neko [10] - - 1.6K+ 1
organicmaps [25] Travel 100K+ 5.1K+ 1
ProtonMail [26] Communication 5M+ 1.5K+ 8
ProtonVPN [27] Tools 10M+ 1.4K+ 2
Total 77

Table 4: Evaluation results of ConfFix and baselines

Tool Pls Crt Sem Syn O Suc P
ConfFix 320/64 318/64 290/58 60/12 2/1 64 100.0%
Lint 32/32 32/32 32/32 1/1 0/0 32 100.0%
XFix 200/40 15/3 15/3 0/0 185/37 3 7.5%

X/Y: X is the number of patches in this category; Y is the number of issues to
which the patches belong. Pls denotes the number of plausible patches. Crt
denotes the number of correct patches. Sem denotes the number of issues
that preserve the same semantics. Syn denotes the number of syntactically-
equivalent patches. O denotes the number of overfitting patches. Suc denotes
the number of issues successfully repaired (no overfitting patches achieve the
highest fitness score in five runs). P denotes the precision.

5.2 RQ1: Effectiveness
As the results of ConfFix are subject to randomness, we ran ConfFix
five times on the 77 real-world CC issues. We set the time budget of
ConfFix to 120 minutes per run, following the existing practice [61].
We validated the patched app 𝑎𝑝𝑝𝑝 as follows. Specifically, we first
checked if 𝑎𝑝𝑝𝑝 preserves the same runtime behavior at API level
𝑙𝑡 with eliminating inconsistencies at API level 𝑙𝑖 . We then explored
the functionalities of the activities that render 𝑒𝑖 and checked if
𝑎𝑝𝑝𝑝 introduces any unintended runtime behavior (e.g., crashes).
A patch is labeled as correct (C) if it satisfies the above conditions
on the Android emulators between API level 𝑙𝑖 and 𝑙𝑡 ; otherwise,
the patch is labeled as overfitting (O).

The results are shown in Table 4. ConfFix generated 320 plausible
patches for 64 issues (Column Pls). Of the 320 plausible patches,
318 are the correct patches for 64 issues (Column Crt). ConfFix
successfully repaired these 64 issues (i.e., no overfitting patches
achieve the highest fitness score in five runs) with a precision
of 100.0% (64/64). This suggests that ConfFix can save the app
developers’ debugging efforts of validating plausible patches.

We checked the semantics of correct patches (denoted as Sem)
generated by ConfFix. Specifically, by referring to the API documen-
tation in Android Developers [6], we checked if there is any behav-
ioral difference between 𝐴𝑓 and 𝐴𝑖 (i.e., semantically equivalent).
As shown in Table 4, among 318 correct patches, 290 of them for 58
issues leverage𝐴𝑓 with the same semantics as𝐴𝑖 . This is consistent

with our finding that app developers prefer issue-fixing attributes
that are semantically equivalent with issue-inducing attributes (See
Section 3). Moreover, ConfFix output 60 patches that are syntacti-
cally equivalent to human patches in 12 issues (denoted as Syn).
The above results suggest that ConfFix can generate patches that
meet developers’ expectations. Among the successfully repaired CC
issues, ConfFix consistently outputs the same correct patches for 60
issues in five runs. ConfFix successfully generated multiple correct
patches for four issues in our evaluation dataset. As in the exam-
ple discussed in Section 2, ConfFix generated two correct patches
by app:lineHeight and android:lineSpacingExtra. These two
attributes share the same semantics as android:lineHeight by
adjusting the spacing between two lines of text.

ConfFix generated two overfitting patches (Column O) for one
issue. This is because of the randomness of ConfFix when searching
for a numerical attribute value in order to achieve the optimal fitness
score. For instance, cwa-app-android’s commit 8296d1f [13] files an
issue induced by android:gravity not available at an API level
≤ 23. While ConfFix can generate correct patches by specifying
android:top="36dp", ConfFix can also generate incorrect patches
(e.g., 17dp) due to the randomness of attribute value searching
process. ConfFix successfully repaired this issue by prioritizing the
correct patches over the overfitting patches.

ConfFix failed to generate plausible patches for 13 issues. Specif-
ically, ConfFix failed to identify the key objects for two CC issues
(See Section 4.1). For the remaining issues, ConfFix failed to rec-
ommend issue-fixing attributes to eliminate inconsistencies in key
fields. For example, fenix’s commit 7cea2ed [16] files an issue caused
by inconsistent handling of android:background for API levels ≤
23. ConfFix failed to generate a plausible patch because there are
no other attributes in the Android framework that can affect the
key fields of android:background (e.g., mBackground).

5.3 RQ2: Comparison
To answer RQ2, we ran Lint and XFix on 77 CC issues. We repeated
XFix five times since the results of XFix are subject to randomness.
We set the time budget of XFix to 120 minutes, the same as ConfFix.

The experimental results are shown in Table 4. For the 77 CC
issues, Lint generated 32 patches that preserve the same semantics
as the issue-inducing attributes (Column Sem). One correct patch
generated by Lint is syntactically equivalent to human patches (Col-
umn Syn). Lint achieves a precision of 100.0% (32/32) by success-
fully repairing 32 issues, which can also be successfully repaired by
ConfFix in consistently generating the same correct patches as Lint.
However, Lint failed to generate plausible patches for the remaining
issues because Lint does not contain rules to provide suggestions
on fixing them (See Section 2). In particular, the 32 issues that Lint
successfully repaired are all induced by android:drawableTint.

XFix generated 200 plausible patches for 40 issues, of which 15
patches for three issues are correct, while preserving semantics
as the issue-inducing attributes. XFix successfully repaired three
issues (Column Suc) with a precision of 7.5% (3/40). These three
issues can also be successfully repaired by ConfFix by generating
the same correct patches as XFix. XFix generated 185 overfitting
patches for 37 issues, and failed to generate patches for the rest of
issues. The reason is that XFix works by adjusting the UI layout
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bounds rendered by issue-inducing attributes, and these CC issues
do not exhibit inconsistent UI layout bounds across API levels. For
example, FairEmail [23] specified android:drawableTint, which
was introduced at API level 23 and can induce inconsistent icons’
color at lower API levels. XFix failed to handle such cases as the
CC issue induced by android:drawableTint does not manifest
the inconsistent UI layout bounds across API levels.

The above results show that ConfFix outperforms baselines in
terms of the number of CC issues that were successfully repaired.
As discussed in Section 2, for each CC issue, ConfFix works by
diagnosing how the Android framework code changes can induce
inconsistent UI displays across API levels, and then generating
patches that can eliminate such inconsistencies. By doing so, Conf-
Fix can generate correct patches without modeling every single
visual feature that can be manifested by CC issues.

5.4 RQ3: Usefulness
ConfFix successfully repaired 40 CC issues that have not yet been
fixed in the latest version of Android apps. We submitted issue
reports or pull requests for these previously-unknown issues to seek
app developers’ feedback. In 36 out of 40 issues, ConfFix generated
one correct patch, which was submitted to app developers for their
feedback. For the remaining four issues, ConfFix generated a variety
of correct patches with the highest fitness scores. In this case, we
submitted patches whose 𝐴𝑓 are semantically-equivalent (Sem) as
𝐴𝑖 (See Section 5.2) For each of the issues, ConfFix produced only
one patch that satisfies the above condition.

We complied with the app projects’ contributing guide-
lines and licenses to submit pull requests and issue reports. We
submitted issue reports only when the projects did not accept any
external pull requests for copyright reasons. To help developers un-
derstand the reported CC issues and patches, we provided the issue
reproduction steps and the screenshots concerning inconsistent UI
behavior of CC issues. Additionally, we have thoroughly tested the
patches to avoid spamming the open-source community.

In total, we submitted patches for 39 CC issues, 38 of which
were confirmed and merged by app developers by the time of paper
submission. We did not submit the patch for one issue, as the devel-
oper fixed it before we filed a pull request. The developers’ patch
for this issue is syntactically equivalent to the one generated by
ConfFix. One remaining patch is still awaiting the app developers’
decision. So far, we have not received a rejection from app devel-
opers. The high response rate (38/39=97.5%) is attributed to the
attached screenshots and reproduction steps. As commented by the
developers of FairEmail [23], the attached screenshots and issue re-
production steps are essential as the issue-inducing attributes were
intended to fix other bugs. We also received positive comments
from app developers. Below are two examples:
• "Thank you, this works great!", in the pull request #45 of airmes-
sage [2].
• "Looks great! Thank for the investigation and fix!", in the pull
request #26364 of fenix [17].

6 THREATS TO VALIDITY
Empirical Dataset. In this paper, we empirically studied the

developers’ practices of patching CC issues in Android apps. We

further propose ConfFix to repair such CC issues automatically
based on the empirical findings. Our findings are based on the state-
of-the-art empirical dataset that was released by Huang et al. [43]
in November 2021. Although the empirical dataset does not contain
CC issues at the latest API level (API level 33 when the paper was
submitted), experimental results show that the findings distilled
from the dataset are also applicable for the latest API level.

Evaluation Subject Selection. We evaluated ConfFix on a set
of 77 CC issues in 13 open-source Android apps. However, our
results may not be generalizable beyond these apps. Nevertheless,
these apps were selected from a large set of candidate apps in F-
Droid [15] and GitHub [18] (See Section 5.1). We carefully inspected
each commit returned by the keyword-based search and collected
valid ones without bias. We evaluated ConfFix on open-source
Android apps as we can access their issue trackers and source code.
Developers can also deploy ConfFix to closed-source Android apps
when the source code and UI test scripts are available.

Subjectivity of Manual Inspections. In this paper, we man-
ually inspected the patches in the empirical dataset to obtain our
findings. We also performed manual validation on patches gener-
ated by ConfFix and baselines. The manual checking can be subject
to mistakes. To mitigate this threat, two authors participated in
the manual process to ensure that the results were consistent. We
released our dataset and evaluation results for public access.

7 RELATEDWORK
Android Compatibility Issues. Compatibility issues are con-

sidered a major challenge for app developers [45]. Existing stud-
ies [35, 42, 43, 56, 58, 60] have explored the characteristics of com-
patibility issues from different perspectives. For example, Wei et
al. [56, 58] studied the common practices of app developers to test,
diagnose, and repair fragmentation-induced compatibility issues.
Huang et al. [42] analyzed how callback APIs can induce compati-
bility issues in Android apps. Cai et al. [35] studied compatibility
issues occurring at both the installation and the run time. Xia et
al. [60] studied the practice of developers to handle Android compat-
ibility issues from the large-scale app code base. Recently, Huang et
el. [43] performed the first empirical study to understand how code
changes in the Android framework can induce CC issues. However,
these studies do not analyze developers’ strategies in patching CC
issues to facilitate automatic repair.

Detecting compatibility issues in Android apps has been widely
studied in the research community [37, 41–43, 46, 48–50, 56–58].
First, DiffDroid [37] and Mimic [46] are dynamic-based approaches
to test compatibility issues by comparing app UI differences among
Android devices. Second,many existing static-based approaches [41–
43, 48, 49, 56–58] use predefined rules to detect compatibility issues
in Android apps. Among them, ConfDroid proposed by Huang et
al. [43] is the state-of-the-art approach for detecting CC issues for
Android apps. ConfDroid is driven by the rules extracted from the
Android framework code changes. However, ConfDroid cannot
provide suggestions on CC issue repair. To fill the research gap, we
propose ConfFix, which leverages the knowledge learned from the
Android framework to facilitate CC issue repair.

Existing studies [38–40, 47, 62] have been proposed to automat-
ically repair compatibility issues in Android apps. For example,
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AppEvolve [38] and A3 [47] updates the usage of incompatible
APIs based on the patterns learned from the examples of updating
incompatible APIs in other apps. Recently, Zhao et al. proposed
RepairDroid [62], which leverages the templates manually refined
from the developers’ examples to repair Android compatibility is-
sues at the bytecode level. However, these approaches can only
repair issues caused by problematic API invocations and are inap-
plicable for repairing CC issues in Android apps. Besides, Lint [20],
a static analyzer officially released by Android, contains predefined
rules for repairing CC issues. As revealed in Section 5, Lint failed to
generate plausible patches for CC issues beyond the capabilities of
those predefined rules. To fill the above research gaps, we empiri-
cally analyzed the common practices of app developers in patching
CC issues. We then proposed ConfFix that can automatically repair
CC issues based on the empirical findings.

Visual-based Issue Repair. There are existing approaches that
focus on repairing issues related to visualization in GUI-based soft-
ware [32, 33, 36, 51, 52, 54, 59]. For example, MFix [52] and Mo-
bileVisFixer [59] focuses on repairing mobile-friendly issues in
web pages. CBRepair proposed by Alameer et al. [32] focuses on
repairing internationalization presentation issues in web pages. La-
belDroid [36], COALA [54] and SALEM [33] focus on improving
the accessibility for mobile apps. XFix [51] focuses on repairing
layout incompatibilities across web browsers based on a predefined
set of visual features. However, XFix is ineffective in repairing CC
issues whose inconsistent visual features go beyond the predefined
rules. ConfFix fills the research gap by leveraging the knowledge
learned from the Android framework to repair CC issue.

8 CONCLUSION & FUTUREWORK
In this paper, we empirically studied developers fixing practices
on 196 CC issues in Android apps. We further propose ConfFix,
which generates patches to eliminate any inconsistent handling of
issue-inducing attributes across API levels. The evaluation results
show the effectiveness of ConfFix in generating patches that are in
line with app developers’ expectations. Currently, ConfFix is driven
by manually built UI test scripts. In the future, we plan to design
an approach that can generate UI test scripts to reproduce the CC
issues.
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